Watcom C++

Class Library Reference

Edition 11.0c

Notice of Copyright

Copyright 00 2000 Sybase, Inc. and itssubsidiaries. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of Sybase, Inc. and its subsidiaries.

Printed in U.S.A.

Preface

Watcom C++ is an implementation of the C++ programming language. In addition to the C++
draft standard, the compiler supports numerous extensions for the PC environment.

This manual describes the Watcom C++ Class Libraries for DOS, Windows 3.x, Windows
NT, Windows 95, 16-bit 0S/2 1.x, 32-bit 0S/2, and QNX. It includes a String Class, a
Complex Class, Container Classes, and an 1/0 Stream hierarchy of classes. The Container
classesinclude a set of intrusive, value and pointer list classes with their associated iterators.

This book was produced with the Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCI| text editor to create source
files containing text annotated with tags. These tags label the structural elements of the
document, such as chapters, sections, paragraphs, and lists. The Watcom GML software,
which runs on avariety of operating systems, interprets the tags to format the text into aform
such asyou see here. Writers can produce output for avariety of printers, including laser
printers, using separately specified layout directives for such things as font selection, column
width and height, number of columns, etc. The result istype-set quality copy containing
integrated text and graphics.

September, 2000.

Trademarks Used in this Manual

IBM isaregistered trademark and OS/2 is atrademark of International Business Machines
Corp.

Microsoft is aregistered trademark of Microsoft Corp. Windows, Windows NT and Windows
95 are trademarks of Microsoft Corp.

QNX isaregistered trademark of QNX Software Systems Ltd.

WATCOM isatrademark of Sybase, Inc. and its subsidiaries.

Table of Contents

Watcom C++ Class Library REFEINENCEccooiiiiiieeeeeerene e

(2= (S T (=TT

2 Common Types

3 Predefined Objects ...
3.1CIN e,

4 istream Input
4.1 Formatted | nput:

=01 (0] Y

4.2 UNfOrmatted INPULo.ooveeeeiieeireerees ettt ebe e

5 ostream Output

5.1 Formatted OULPUL: INSEIES ...cvviviieiieeseeeceee et st
5.2 Unformatted OULPULccceiiiieeie e see et sre st e e e e eneenis

6 Library FUNCEIONS 8N TYPESoueiuiiiiieieeiererie sttt be e sbe e sen

7 Complex Class

Complex Class DESCITPLIONccccereierieierieerieerie sttt ebe s snenens

Complex abs() .
Complex acos()

L0001 o] L= qR=o o1 o
COMPIEX @IG() crverrereerereerererieeesesesrestestestesretesseseeseseeseeseesessessessestessesaessesseseessensenes

Complex asin()
Complex asinh()
Complex atan()
Complex atanh()
Complex()
Complex()
Complex()
~Complex()
Complex conj()
Complex cos() .
Complex cosh()
Complex exp() .

imag()ccoenee
Complex imag()

00~~~

o ©

11
11
11

13

15
16
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

35
36

Table of Contents

Complex [0g() .cceeerereriereenienienes
Complex [10g20() ..cevereerereereeeene
Complex NOrm()ccovevvereeernnes
Complex operator '=()ccccoveuee.
Complex operator *()ccceevevene
OPErator *=() ..cccooevvenrerenereieneas
(o]0 = > (0] 4 () RS
Complex operator +()ccceeevenne.
operator +=() ..cceverierereierieeenns
OPEFALON =() wveveeeeeeeeneeeeere s
Complex operator -()cccceeeeuenne.
OPEraor -=() ovvereeeereeeeeeereenns
Complex operator /()ccoererene
OPErator /=() ..cccveeerenereneeeneeieens
Complex operator <<()
OPErAtor =() .ooeereeerieenieerienenieeas
Complex operator ==()cce...
Complex operator >>()
Complex polar()ccoeveevereesnennn.
Complex POW() ..ccoovereereneriereenens
== 11 IO
Complex real()ccoeeveereeneeneeieenens
Complex SiN() «ooeveeereeereerieieees
Complex SiNN() ..ovveeeveeenirines
Complex Sgrt() «ooeveereeerevereennas
Complex tan() ...coceeereereereennns
Complex tanh()cccceevvvreverennne

8 Container Exception Classes
WCExcept Class Description
WCEXCEPL() eveeeeneeeriererenenieniene
~WCEXCEPL() evveveeererenenereenns
EXCEPLIONS() .veverveerreeriereeiereeieeas
WC_SHAE .o
W(ClterExcept Class Description
WCIterEXCept() ...ooovvverereererienenn
~WCIterEXcept() .coovvvvervrivrrrennnn.

[SX00r= o) 110]915 () R
WCItEr State .o

9 Container Allocators and Deallocators

Vi

37
38
39
40
41
42
43

45
46
47
48
49
50
51
52
53

55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
72
73
74
75
76

77

Table of Contents

10 HESN CONLAINETScueveiiieeesteistese ettt b e sb e st s e e s b nn s 83
WCPtrHashDict<Key,Vaue> Class DEeSCIPLioNcccceoereeerierienirere e 84
WCPHTHBSNDICH() .euvuveveererieieeresirie ettt et 86
WCPHTHBSNDICH() -euvveveereeieieere sttt st 87
LT @ 1 =S o) TR 88
~WCPLHESNDICH() ..eveeeveieeiereee et e 89
DITHASN() v s 90
PUCKELS() vt 91
(011 T (R SST 92
ClEATANADESITOY() .vveiveieeiieriesieee ettt st re s e e s e e e e teenaesreenrenreenes 93
(o] 012 1oL) ISR 94
LS L= TSR 95
Lo [TP TSRO 96
FINAKEYANAVAIUE() ..ottt 97
FOTATT() ettt b e 98
1= TSR 99
1 00 100
(o0 = () g 1) IR 101
(010 = () g 1) TR 102
OPEFBEON () eiuveeeeeeeeee ettt sttt ettt re ettt h bt ae b b e bbb et e e b ae e 103
(o0l = (0 g) IO 104
1= 10107 (VTR 105
FESIZE() eeeeeereeue ittt ettt b bt h b bR bR n et b b 106
WCPtrHashTable<Type>, WCPtrHashSet<Type> Class Descriptionc.ccccoeeenee. 107
LT @ 1 oS 1S T 109
WCPHTHESNSEL() .vovvvooveoeeeeeeseeeeeeeeseseseesssseessssassssssesses s sssessen s sssessnsssenessnssenes 110
WCPHITHESNSEL() ... 111
~WCPHITHESNSEL() .. 112
WOCPIrHEShTEDIE() .o 113
WOCPHrHEShTEDIE() ..ttt 114
WOCPHrHEShTEDIE() ... 115
~WCPIrHEShTEDIE() ...eeeieeeieririeee et 116
DITHBSN() ettt 117
BUCKELS() ettt 118
CLEAI() ettt bbb 119
ClEATANADESIIOY () .eeeverertereriereeie sttt ettt et 120
(o] 1= 01 121
L L= 122
FINAQ) et 123
L0 7 AN (P 124
1S = 4 TR 125
1 = 01010/) SRR RTR 126

vii

Table of Contents

OCCUIENCESO() vevetereirteieree st eee ittt s st sttt bbb e e e e e e e e e st e s st saesbesbesbesbesbeseen 127
(o0 [g) TSRS 128
OPEIAION T=() ettt b et et 129
= 001077 OSSR S TR S TSRO 130
FEMOVEATT() ettt 131
=S4) OSSR 132
WCVaHashDict<Key,Vaue> Class DESCIPioNcccevververerreeeeerere e e seesiesee e 133
WCVEIHBSNDICH() ..vveeeererrereeresiereeesss st 135
WCVEIHBSNDICH() ..vveeeereriereeresieieeesi et 136
WOCVEIHBSNDICH() ..vveveeereeieeeerisieiceesi ettt 137
~WCVEIHBSNDICH() vttt 138
DITHBSN() ettt et 139
PUCKELS() ettt 140
CLEAI() ettt 141
(ool g1 =] = (OSSP 142
ENEITES() venerteeetere ettt sttt bbbt 143
FINAQ) e s 144
LT aTe (= YN Lo LV L= 145
1 0] 2N 1 P 146
LTS =) S 147
FSEIMPLY () +enveeereetentereee ettt ettt bbb st b et e et e et e e ehesb b ae b b e 148
(o]0 = (o g |) IR USSR 149
(o1 = (o) gl |) IR OSSP U TP TSUPTSUPSPPTO 150
(o1 = o) g) TSSOSO 151
(o] 1< = 0] g) OSSOSO 152
= 000177 TSP 153
=S .= (S 154
WCVaHashTable<Type>, WCValHashSet<Type> Class Descriptioncccccueuee... 155
WOV EIHBSNSEL() ..ovveeeeirerieieeresiieee et 157
WOV EIHBSNSEL() ..ovvveieieieieei et 158
WOV EIHBSNSEL() ..evveeieeieieereriie ettt 159
~WCVEIHBSNSEL() ...vvvieirieieerireeiei ettt e 160
WCVEIHBSNTADIE() ..vceieirieieirinieiereresie ettt 161
WOCVEHBSNTADIE() ..eeeeeeerieirerieieresesie ettt 162
LT @ ot I o = (T 163
LT AV [oS I o= T 164
DITHASN() v s 165
PUCKELS() vttt 166
(011 T (ST 167
(o0] 1] 1 LS 168
LS LT TR 169
L0 [TSRS 170

Table of Contents

FOPATT() ettt ettt s aesb e b bbb e 171
1S =) TR 172
FSEMPLY() ettt 173
OCCUFENCESOF() vttt ettt ettt sttt b e 174
(oo L< = o) g) TSSOSO 175
(o]0 1< = 0] g) SO 176
1= 0010 177
1= 001007 AN 1 T 178
FESIZE() w.vvereuerereetesere sttt sttt e bt e bbb R bR bbb n s 179
L1 HBSN TTEIBLOIS ...veeeeveeetireet ettt 181
WCPtrHashDictlter<Key,Value> Class DESCIPLONccooevereerieiieieeieeieeeesesesieeens 182
WCPHHBShDICHEEN() .ottt s 183
WOCPHHBShDICHEEN() .ot 184
~WCPLHEShDICHITEN() veveveeeeeeeie ettt 185
(ool g1 =] = 1 (OSSPSR 186
KEY() vttt s 187
(010 = = (0)) T 188
(010 = (0]) ISR 189
FESEE() 1verereerereereetesesere sttt ettt et b bbb bbb bRt R b st b bt e er s 190
FESEE() verereereeeereetetes et sttt sttt et b bbb b e bbb bbb bRt e b st et b et e et 191
A2 11§ OO PTOPRSRSRR 192
WCVaHashDictlter<Key,Value> Class DESCIiPLioNnc..cccoeveireerieereenieereeeneens 193
WCVEHBShDICHTEN() eeveveeeeririeiee st s 194
WOCVAHBSNDICHTEN() ..o.vvooeeeoceeceeeeeeeeeeeeeeeseeeseeeseeessees e ssssesees s ssssses s seeessanenan 195
~WCV A HESNDICHLEN() we.vvvoveereeceeeeeeeeeeseeesesseeseesseesessesssessesssssssssessses s sssnessnssnnes 196
(o] 1= 1= () 197
KEY() ettt e 198
(010 = = (0) I TS 199
OPEFEEON () oottt et b e b r et e e 200
FESEE() 1verereerereereeteteere sttt et b ettt b bbb bbb bbbt e e bRt bbbt nenenas 201
FESEE() 1verereereuererertesee et teie st s ettt s e bt e st e bbb e e b b e e b b e e R bRt e R b e Rt e b bRt b bt 202
VAIUB() ottt e b e e e ettt en 203
WCPtrHashSetlter<Type>, WCPtrHashTablelter<Type> Class Description 204
WCPLHESNSELEN() vovvvieeeeireeteree e 205
WCPLHESNSELEN() vovvevieetieeiereeee e 206
~WCPHIHBSNSELITEN() .vevveeeeeeireeese st e et neenen 207
WCPLrHAShTADIEITEN() .ovveveieieeeereeeeee et 208
WOCPHrHEShTEDIEIEN() ..eveveeierieeeee e 209
~WOCPLrHEShTEDIEITEN() ..veeeeeeeirireeie et 210
(o] 012 1 1< 1 () OSSR 211
(o014 = 011 TSR 212

Table of Contents

(o]0l (0] g) T IR USSR 213
(o]0 (0) ISP 214
=5 (OO 215
=5 OSSR 216
WCVaHashSetlter<Type>, WCValHashTablelter<Type> Class Description 217
WOV AHBSNSEULEN) .ovoovveoeerereeeeeeeeeeeeseeseeseesessess s sesssssssssssessenssnssssesssnssnsssnnees 218
WOCVEIHBSNSELITEN() .oevvveieiereereeerere et 219
~WCVEIHBSNSELITEN() ..oveveeirereeieeeires e 220
WOCVaHBShTADIEITEN() .veveeeiieiee e 221
WCValHBShTADIEITEN() .veveeieeieeciierriee e s 222
~WCVaHEShTADIEIEN() ...ooerveeeeeririeiee e 223
(o] 1= 1 o1 1 () OSSR 224
CUNTENE() +eueeteeetereetereet ettt b e bbbt bbbt b e 225
(o 1< = (o) gl)) IR OSSOSO 226
(o]0 = (0]) 227
(== () TSR 228
FESEL() 1evrereerererereerer st 229
12 LiSt CONLAINENSevvvinierieeeieseses et b et b et e bbbt nnen e 231
WCDLINK ClasS DESCIIPLION ..ottt e 233
WWECDLINK() +euterereeueererieteesesiete sttt ettt sttt bbb e 234
~WVCDLINK() ceeeteteseresieteee sttt ettt ettt e bbbt 235
WClsvSList<Type>, WCIsvDList<Type> Class DesCriptionccccceevveneenieennene 236
WWCTSVSLISE() c.vuvveeeeenteiereresieteeresis it e s ses bbb s et se st et s e sa b ne e e sees 239
WWCTSVSLISE() 1uvuvveeeeerteienireeteseeneseseeseeseseetese s e tesee e seseneseseeeeseseseeteseneseseesenenesessnes 240
SWCISVSLISI() cvvrrvvereereeeesesseseessessesseseesssssssseessesesssssenssnssssssssessnsssessssnsssnsssnssenns 241
WCISVDLISI() wvvreeereeieieeresrerenere e e 242
WCISVDLISI() w.vrevereereerereeresrerenere e s 243
~WWCISVDLISI() vvrveereerereniresiereese st 244
=T0] 1< oo | OSSR 245
[0l 1 (USSR 246
ClEATANADESITOY() «.eeeverrereerienieriesieierie sttt se et sbe st e e et e e e e e e e seenesbesae e 247
COMEBINS() evervetereeuereesereesest ettt b bbb st bbb bbbt b st b st bt et et b e e b e b e 248
ENEFTES() vttt ettt b bbb bbb 249
FINA() ettt 250
FINALBSE() veveeereeeerieesie e sttt bbb et 251
10] 72N 1 PSS 252
01) 253
101t 254
L T0 L= S 255
1S =) TSRO 256
FSEIMPLY () +enveeereetesteseere et ettt ettt s b et e st sb e e e e e e e e e ae et et eheeb e b ae b e b e 257

Table of Contents

(o]0l = (] g) TSSO 258
(o]0 (0 g) TSRS 259
WCPtrSList<Type>, WCPtrDList<Type> Class DesCriptionccccverreneenienennene 260
WWCPEISLISH() vuvveeereerenieieneresietese sttt sttt e et b e st e e sssenas 262
WWCPEISLISI() vueveeeneerenereeneresieeesesesieee e e essee e este e et te e e eseesenesessesenesesseseneessssenas 263
WWCPHISLISI() vueeeeereerereereneresieeenesesieeesenesesesseesesesteesesesseseesessesenesesssssnssessssesenssssseses 264
~WWCPHISLISI() wvvereereerereeresre s 265
WCPHIDLISI() wveverereereereseneresrereseres s s 266
WWECPHIDLISH() w.vevevereereeeeeenirestereseses st 267
WWCPHIDLISH() w.vveveueereeieieneresieteseres ettt ettt 268
~WWCPEIDLISE() eveveeeeteieneresieiee sttt s et 269
2 T0] 1< 0o (SRR 270
CLEAN() ettt 271
ClEATANADESIIOY () +.eevereererertereete sttt sttt s 272
(ool g1 =] = (OSSP 273
LS L= TSSO 274
FINAQ) e e 275
FINALASI() crovvrerereeerere e 276
10) 2N 1) TP 277
0= () IR SO OT PP TP 278
101 IR 279
1S =) RO 280
FSEMPLY() -ttt 281
OPEIAIOL T() .euveuetenerteeetere ettt ettt bbbt bbbt 282
(o]0 1< = 0] g ISR 283
WCSLINK Class DESCIIPLIONcuereeirieiirieierieerieesieesiee ettt 284
WESLINK() vt 285
~SWWECSLINK() weveerereiresrereee s 286
WCVaSList<Type>, WCVaDList<Type> Class DesCriptionccccveveveeveeveeeennnne. 287
WOV BISLISH() w.eveveneereeirienireeieie ettt sttt 290
WOV BISLISH() c.eveveneerieieienireeieie sttt 291
WOV BISLISE() ceeveereererieienerisieie ettt sttt sttt 292
SWOCVBISLISH() weeeveeerreieririnieiene ettt ettt s et 293
WECVBIDLISE() eoveveeerieieeririeieieseseeteie s et s ettt s st s s saebenenas 294
WCVAIDLISH) weorvveereeeeeeeeeeeseseseeeseesessseseessessessssssssseesssesssssssesssssssssssssessssssssnessnsssenes 295
WOV BIDLISL() eoveveeereeneerereeeeresereeieseseseseeseeseseesesesesessssesesesseseessssesesesessssesesesensesens 296
~WCVEIDLISH() wvveeeeereeerereerereeresrereesese e 297
=1 0] 1< 1o | 298
(011 T (OSSR 299
ClEATANADESITOY() .veeiveieeiieeie e ee sttt st et re s st e e e st e nae s reenrenreenes 300
(o] 0121 o L) OSSR 301
LS LTS TSR 302

Xi

Table of Contents

FINA() et bbbt 303
FINALASI() vverereeeeiereririe ettt ettt b et 304
FOTATT() ettt ettt 305
01 () IO 306
FNOEX() cveeeeereenerteert ettt b bbb bbbt b 307
TNISENT() cveeeeereenereeert ettt sttt b bbbttt b et enn 308
1S 00 309
(00 = ()) S 310
(010 (0) TSR 311
L3 LISt ITEIBIONS .eeeveueetieeteeet ettt b ettt nn e 313
W(ClsvConstSListlter<Type>, WClsvConstDListlter<Type> Class Description 314
WCISVCONSESLISHITEN() ©.vvveeeeeiereiirieeeiesee et 316
WCISVCONSESLISHITEN() ©.vvveeereiireiisieieesee e 317
~WCISVCONSISLISHITEN() eoveeeeereeierieieree ettt 318
WCISVCONSIDLISLIEEN() .evevervieriiieiiieesie et 319
WCISVCONSIDLISHIEN() vvvvvereeieerieiereereeeee s stesie s e e se e sre e s 320
~WCISVCONSIDLISLIEEN() v.vevereeeeeeeeeeieiere e e st e s e e s sre e 321
(o0 012 101 (S 322
(o U1 = () S 323
(o]0l = (o) T IR USSR 324
(o0 (0) TSRS 325
(o] 1< = o) g) ISR ST PSR PP 326
(o]0 1< = o) g) ISP 327
(ool = o) g (TSSOSO 328
(== (TSR 329
FESEL() 1evrereerererereerer ettt 330
W(ClsvSListlter<Type>, WClsvDListlter<Type> Class Descriptionccccceeeevenenee. 331
WCISVSLISLIEN() evvverenireriereenesiieiee ettt 333
WCISVSLISHIEN() evvveeeieririeteeresiie ettt 334
~WCISVSLISLITEN() ovveveeerieieererieiee sttt e 335
WCISUDLISHTEN() evveeenererieeeeresisieee sttt s 336
WCISUDLISHITEN() evveeenererieieenesisie sttt bbbt et 337
~WCISUDLISHTEN() w.veveueeireeieeririeeeie sttt 338
BPPENA() vttt bbbt 339
(o001 =] = 1 (OSSPSR 340
(ot = 01 341
1S = 1) SR 342
(010 = = (0)) IR 343
OPEFEEON () ettt ettt b e b e se e b e e 344
OPEFEEON F7() ettt ettt sttt b et b e b e e et et 345
(o0 = (] g) ISR 346

Xii

Table of Contents

(o]0l = (0 g (USSR 347
=S (U U PSSR 348
TESEE() evereerereerereet sttt rt ettt b et bbb bbb R a bt b e b e b e b e b e bt e ene e 349
WCPtrConstSListlter<Type>, WCPtrConstDListIter<Type> Class Description 350
WCPLICONSESLISLITEN() ..vvveeereenereiirieieierie et 352
WCPLICONSESLISLITEN() ..vevevereeereieriineeerieesee ettt 353
VA A O (00 g (S I) =) 354
WCPLTCONSIDLISLIEEN() .vvcveieiieiieiereeseeeeeee sttt 355
WCPHICONSIDLISLIEEN() .vvcveieieiiieiie ettt s 356
~WCPHrCONSIDLISLIEN() weeovveeeeieeeeeieeie sttt te sttt e ee e eesnnens 357
(o] g1 = 1 1< 1 () OSSR 358
(o014 = 011 TSR 359
(o1 = (o) gl)) IR TSSOSO 360
(o]0 = (0]) TSR 361
(o]0 (]) S 362
(o]0 1< = 0] g) ISR 363
(o]0 (0 e (R 364
1= = (S 365
FESEE() 1verereerereereeres et s et sttt b et R e Rt R bRt ner s 366
WCPtrSListiter<Type>, WCPtrDListIter<Type> Class Descriptioncccceeeeeeeuene. 367
WECPHISLISHIEN() cevveeeeereeieteere sttt 369
WCPHISLISHIEN() eeveeeeeririeieerisirie ettt 370
~WCPHISLISHETEN() ovveiieririeieeserisie ettt s 371
WCPHIDLISHEEN) evveeenererieteeresieieeesesietee sttt st st st es 372
WOCPHDLISHLEN() ovvovverereeeeeeeeeseeeseeeseesseseessesseessessesssss st s ssssesssssssessesssssssnneas 373
~WCPHDLISHEN() vvvrvercveeeeeeeeeeseseeeeseeessessessssssessssssessssssssssssssssessessssssessnsssesennes 374
=1 0] 1< 10 | 375
(o]0 1t= 1 1= (S 376
(01014 = 011) 377
LTS =) S 378
(o]0l (o g) T ISR 379
(o]0 (0) TSRS 380
(oo 1< = o) g) ISP TSRS PSPPI 381
(o]0 1< = o) g) ISP 382
(ool = o) g (OSSPSR 383
==) PSSP 384
1= = () 385
WCVaConstSListlter<Type>, WCVal ConstDListIter<Type> Class Description 386
WCV B CONSISLISLITEN() evevereerrreeieiresieiee et 388
WCV B CONSESLISLITEN() eveveueeririeieeierieiee ettt 389
~WCV A CONSISLISLIEN() ..eeueveeeeierireeieiererieie ettt 390
WCV A CONSIDLISHITEN() ..vveueerireeieiririeiee ettt 391

Table of Contents

WCV A CONSIDLISHITEN() ..vveeerireeieiririeieereseeie ettt 392
~WCV A CONSIDLISLITEN() ..evvvevenererieieie sttt et 393
(ool g1 =] 4= 1 (TSSOSO PSR UTSUTSTPT 394
CUNTENE() +euveteeetereetereet ettt bbbt b et b et b bbbt b et st e et 395
(oo 1< 1= o) gl)) IR OSSO S R SP 396
(o]0 = (0]) 397
(o]0 (0) 398
(o]0 = () e) T 399
(010 (0 e (RS 400
FESEE() 1verereerereereeretes et sttt ettt b et b bbbt bRt b bRt n et 401
FESEE() 1veuereerereerertetes et sttt et e bbbt bbb e bbb bRt R b bRt a bbb bt eenens 402
WCVaSListlter<Type>, WCVaDListlter<Type> Class Descriptionccccoceevevenenen. 403
WOV BISLISHEEN() ereeeeeererieieenesisie ettt s 406
WOV BISLISHEEN() eveeeeereieieeresieieeeris ettt sttt es 407
AT O = S T 1 1 =) T 408
WOV ADLISHIEN() ovvoreeoreeeeeeseeeseeseeseeseseseesessssssssssssessessssssssssesssssssssssssesssssssnssnnes 409
WOV EIDLISITEN() .voveeiererrereeresiereeesrs s 410
~WOCVEDLISLIEN() veveveeeereiierereeieenese e 411
=1 0] 1< 1o | 412
(o0 11 L=) TS 413
(o014 (= 011) TSR 414
1S =) RO 415
(o1 = o) g) IR OSSPSR 416
(o]0 = (0] o) SRS 417
(o]0 (0]) 418
(o]0 1< = 0] g) ISR 419
(o]0 (0 e (R 420
1= = (S 421
FESEE() 1verereerererereeresee st st et ee etk ettt R Rt E bR bRt R Rt rens 422
@ TN L= O] g =1 = PSS 423
WCQueue<Type,FType> Class DESCIPLIONcccoceiererieriiriene e 424
WECQUEUE() ..eineretieereiete st te ettt sttt bbbt st se bbbt b et sereenas 426
WECQUEUE() .eeeereeeieeriietee st te ettt ettt ettt st se e besese st et ne e seebesenesseenas 427
~WCQUEUE() vttt sttt b 428
Lol) TR 429
L L= 430
FIPSE() cveeeereerereere et 431
GEE() weeerererere ettt R bR bbb 432
LTS =) S 433
1= 07010) RS TRTR 434
[BSE() vrvererereeeeenereet ettt ettt bbb b bbbkt e bt nn e 435

Xiv

Table of Contents

15 SKip LiSt CONAINEISveveieieeiereeeeee ettt sttt sttt e e a e se e et eaeebesaesaesbe e es 437
WCPtrSkipListDict<Key,Value> Class DeSCIiptionccccooerereieieeienenenesesesesens 438
WCPLISKIPLISIDICH() +uvveueerereerereererieierieiesiee sttt 440
WCPLISKIPLISIDICH() +uvvereerereererieeerieierieesieesieesi st ei e 441
WCPLISKIPLISIDICL() +uvevereerereererieierieierieesieiesieesi s 442
~WCPHSKIPLISIDICL() +.vrvveeerereneeeerererieseeneriseseesesesieeesesestesesesesessssesesesassenssessssenenesens 443
(0t 444
ClEAANADESITOY() w.vveveerereeriisiesieseerieste st e e ee s e sre s e saesreste e seeseesteseeeeseeneeneesessesannnens 445
(o)1= 101 446
LS LU= S 447
FINA() ettt 448
FINAKEYANAVBIUE() ..ottt et 449
FOTATT() ettt ettt 450
TNISENT() cveeeeereeeeree sttt ettt ettt b b bt bt e bt 451
FSEMPLY() ettt 452
(oo 1< = 0] gl |) ISR 453
(o]0 = () g 1) 454
(0] = (]) 455
(010 (0) TS 456
1= 1010177 T 457
WCPtrSkipList<Type>, WCPtrSkipListSet<Type> Class Descriptionc.cccoeeenee.. 458
WCPHISKIPLISISEI() veueeeeveeereririeiesesesieieesesisieie sttt 460
WCPHISKIPLISISEI() veueueerrerereririeiereresieieesesisieie st b et 461
WCPHISKIPLISISEI() vevveerrrrererenieienesesieieeseseseeie sttt s et es 462
~WCPLISKIPLISESEL() .eveververereeerieririeseete sttt s besnene 463
WWCPLISKIPLISL() +uvvereerereerereererieierieerieesieestese sttt ese e seenas 464
WECPHISKIPLISE() vevveeeereeeereeeresesesreseseestestesaesseseesseseeesseeeeseesessessessessessesasssenseses 465
WECPEISKIPLISE() veuveveeeeeeerieeeesiesesteseseestesteseesees e aesaesesaeee e eseesessessessesaesnessesseses 466
~WCPHISKIPLISI() vvreveererrereerereeeeieseses et e 467
(o=) S 468
ClEATANADESITOY() w.eeeveeeereerterterieseerieie ettt se et e bt e s enesbesaeene 469
(o] 012 1oL) ISR 470
ENEFTES() veueeteeerere ettt ettt bbbt b et 471
L1110 [TSRS 472
FOTATT() et bbb bbb 473
1= ST 474
1 00 475
(ol oi 01 1= aTor =S @) P 476
(010 ()) T 477
(o0l = (0 g) TP 478
L= 10107 RSP RTR 479
1= 0010072 N 1 1 ISR 480

XV

Table of Contents

WCValSkipListDict<Key,Value> Class DeSCIPLiONccccvevereriereeneeereeeseseseniens 481
WOV B SKIPLISIDICL() .vuvvveuenerererieiererieieiesesesesieseseses i e be e ss e s sesnesenas 483
WCV B SKIPLISIDICL() .euvveevenereririeiereririeienesesisieiesesesisie s bbb s se s s 484
WOV B SKIPLISEDICL() evuvrveerenerereeeeierereeieienesesessesesesesisiesesesseseesesessssesesessssesesessssesenes 485
~WCV A SKIPLISIDICL() ..veveveerererrererereeienererieseeseseeeeeesesesaesesesesessenesesesassenssessssenesesens 486
Lol TR 487
(o] 1= 01 488
LS L= 489
FINAQ) ceeeeeeet e e 490
FINAKEYANAVAUE() ..oovieeiieieeece ettt st sre e sreenne s 491
10 1 SOV PRSPPI 492
1S =) TR 493
FSEMPLY() -ttt 494
(oo 1< = o) gl |) IR OSSOSO 495
(oo 1< = o) gl |) IR 496
(oo 1< = 0] g) TSP 497
(o]0 (0) 498
1= 00107 499

WCVa SkipList<Type>, WCVa SkipListSet<Type> Class Description ... 500
WOV EISKIPLISISEI() .euvvvevreerereeieierisesieieene sttt 502
WOV EISKIPLISIESEI() .uevvevrrerererieieneresieienesesi ettt 503
WOV BISKIPLISESEI() .eueuereerreerererieierirenieienesesisiee s se s bbbt 504
~WCV I SKIPLISISEI() .evvreerereriererirerieieenesisisie sttt bbbt s 505
WOV BISKIPLISE() +veuererrrrerererieieenesisieienesesis e ses e ese st se et s et s e s saesenesesssenes 506
WOV BISKIPLISE() -vrnereereererenieeeenesereesenereseeeeseseseseeese e eesesesesessesesesesteseneseseesesensssssnes 507
WOV BISKIPLISE() «vrrereereerererieeeeneseseeseeseseseeeseseseeseseseseesenesessesesesessssesensssssssesensssssees 508
~WCVEISKIPLISI() wvreeeerrrreirererrereenese et 509
(011> (ST 510
(o)1= 101 511
LS LU= S 512
FINA() oottt 513
FOPATT() ettt ettt s he b b s ee st nbe e 514
TNISEIT() cveveeereererees ettt ettt ettt ettt bbb bbb e bt et b 515
FSEMPLY() +oneeteeetere ettt 516
OCCUTENCESOF() vervevereeiertee sttt sttt sttt sttt st sttt 517
(oo 1< = 0] g) TSRS 518
(o]0 (0) S 519
1= 0010 520
1= 001007 AN L1 TR 521

16 SEACK CONLAINETecuieeieieeeertee ettt 523

WCStack<Type,FType> Class DESCIIPLIONccccviiirerierierieeree e 524

XVi

Table of Contents

WWESEACK() +-vveneereerenerenieteene sttt ettt st sttt sn b e 526
WWECSEACK() +-vveneereerenererieteeresis i et sttt b bbbttt ns bbb e e e 527
SMVCSEACK() vverereremeeririemeereresieie st se bbb sb bt s b et b et b bbbt 528
CLEAI() ettt 529
ENEFTES() vnerreneetere ettt e bbbt 530
1S 091010/) TSP SN 531
0] o 532
PUSNI() ettt 533
L0 o] TS 534
17 VECION CONLAINEN'Seveueerieetiseeteseet st se et b bt se bt e e n e s e 535
WCPtrSortedV ector<Type>, WCPtrOrderedV ector<Type> Class Description 536
WCPLIOrder@dVECON()eovoveeereereeiisieiesieesieesie st 539
WCPLrOrder@dVECOr()eovvveereereriinieiesieesie et 540
~WCPLrOrderedV eCtor() ..o.eoveereeerieerieeriee ettt sttt bbb 541
AT (S o g = V= (o USRS 542
VAT L@t 1S 0T (=0 |V ="ox (o) (R 543
VAL O 5 (=0 VA= o (o) 544
= 10] 1< 1o | 545
(o=) 546
ClEAANADESITOY() w.eeevereereertinierieseenieie ettt se st st e e e aesbesaeene 547
(o] 1= 1oL) ISR 548
ENEFTES() vttt ettt bbb 549
FINA() ettt e 550
FIPSE() ettt bbbt 551
FNAEX() cveeerereenereeerteer ettt sttt b et b e bbbt a bbb nn 552
1S = S 553
LTS = VN 1 554
1 100/) I 555
TBSE() cvevereeereteeeei ettt bbb bbbt 556
OCCUITENCESON () wvetereeiteie sttt ettt ettt aesb b saesbesbe e 557
(o]0 = (] g |) IR USSR 558
(ol = o) g) TSSOSO ST SUPSPPO 559
(oo 1< = o) g ISR SRS PP 560
[S10= 1= 0T [TSRS 561
= 000177 TSRS 562
1= 010 7C AN 1 563
1= 01007 AN 1 564
1= 0010 V7= ST 6=) IS 565
L1 0V) P 566
FESIZE() w.erveveuerereeteiene sttt sttt ettt bbb bR bbb e b bt e bRttt e bRt e e et b 567
WCPLtrVector<Type> Class DESCHPLIONcoiierieieieeeeeeeesie s 568

XVvii

Table of Contents

ATiT L (Y= o (o) TR RSP 569
ATiT L@ (Y= o (o) TR 570
WECPLIVECTON() vuevineetieetereete sttt sttt b b 571
~WCPLIVECION() wovveeeeieieeesiees ettt ettt e 572
CLEAN() ettt 573
ClEATANADESIIOY () .eeeveerterertereeie ettt ettt ettt 574
=0T 11 1 S 575
(o0 = () g 1) T 576
(010 ()) TS 577
OPEFBEON T=() ettt ettt ettt b e bbb et et 578
FESIZE() w.eveveuerereeteiere sttt sttt sttt e bbb e bR e b bt e bRt e bRt e et n s 579
WCVa SortedV ector<Type>, WCValOrderedV ector<Type> Class Description 580
WCV A OrderedV eCOr()eoeeveeeerereeeirieierieiesieesieesi st 583
WCVAOrderedVeCtOr()ccoeeeerereeeirieerieesieesieesi st 584
~WCVAOrderedVEeCOr()oerveeerieerieirieesie sttt sre e 585
WCV A SOMEAV ECLON() ..vereevereeniriiirieirieree ettt 586
VAL @AY= 1S o 5 =0 | VA= ox (o] (R 587
LA GAVE= K o (=0 VA= o (o () T 588
=1 0] 1< 1o | 589
(o=) 590
(o] 1= 1o L) ISR 591
LS L= SRR 592
FINA() ettt 593
FIPSE() weeenereeeet ettt 594
FNOEX() veeerereenerteert ettt ettt bbbt b bbb a bbb 595
1= OSSR 596
LTS = 7N 1 597
1 100) 598
TASE() cvevereeerereeere ettt 599
Lo lo ol [=0 or =) R 600
(o]0l (o] g |) ISR 601
(o0 = [g) T USSR 602
OPEIAION T=() ettt 603
[S10= 1= 0T [TSP STUT ST 604
= 001077 TR 605
= 001007 L TSRS 606
1= 0107 AN 1 607
1= 0010 V7= ST 6) RS 608
FEMOVELBSE() wovriveieeerieieie st s ettt e et te s re bt see s e et st se et e e e e e e eneenneneens 609
FESIZE() w.erveveuerereetetert sttt sttt b et bbb bbbt e bbb n s 610
WCVaVector<Type> Class DESCIHPLIONcociirierierierieieieeeeeere e s 611
WOV BIVECLON() eveeieieieiririeiee sttt sttt s sttt st 613

Table of Contents

WOV BIVECLON() evieieieiiiririeiee sttt ettt s 614
WOV BIVECLON() eveeieieiiirinieiee sttt st sttt s s 615
~WECVEIVECON() .vveeeieieeieteieie sttt sttt et 616
CLEAI() ettt 617
TENGEN() ettt 618
(oo 1< = 0] gl |) IR TSRS 619
(o]0 = (0) 620
(00 (0) S 621
FESIZE() w.vvereuerereetesere sttt sttt e bt e bbb R bR bbb n s 622
18 INPUL/OULPUL ClASSESeveveieeieisiesie ettt sttt s et e st s e e e se e e ebesbesaeseeseas 623
filebUf Class DESCIIPLIONcoiiiiieriiriirie ettt 624
1=) TSSO 626
CLOSE() vttt bbbt 627
0 (P ST 628
L= o 629
FHTEUT() ovreiie s 630
FHTEUF() wovreeiee s 631
~FHEDUF() e 632
10 0= o TSV UR PP 633
(o]0 o USRS 634
(0707 01 (o USSP TSP 635
OVEITIOW() vttt 636
PDACKFAI() et 637
LSS (o) ST 638
LS {01 S 639
LS o (R 640
01070 U= 1o 1 T 641
fstream Class DESCIIPLION ...cccvceiiiesecese e e e see et e et sresbe s resrestesaesnens 642
LIS == 0 T 643
RS == 00) TSRS 644
LRS00) TR USSR 645
LS =20 11 TR TSSOSO U RTPESUTR PSP 646
~FSEFEAMI() ettt 647
(o]0 1< o) ISP 648
fstreambase Class DESCIHIPLIONcocerieirieirieere et 649
BEEBCN() v 650
(0[5 S 651
LB == 00107 S <) SRR 652
RS == 107 S =) 653
FSIrEAMDASE() ...ieeeeeeeeee ettt bbb ettt 654
RS2 00107 S <) OO USUSRSRSR 655

XiX

Table of Contents

~FSIrEAMDESE() ..o e 656
1S o] o= 0 TSR 657
L0 TPV 658
(o]0 1< o) ISP 659
FODUF() vttt bbb e bbb s 660
LS {01 S 661
ifstream Class DESCIIPLIONccccueeeeeeireee et sreean 662
LS U= o 663
LS U= o 664
LS =T 1 S 665
IFSEFBAM() ettt ettt b e b e 666
~IFSEFBAIM() e et b e 667
(o]0 1< o) ISP 668
10S ClaSS DESCIIPLIONc.cviuiriiieiiieieiees ettt 669
0o | TSR 671
o712 ST 672
[0t (S 673
BOF () +avrerere ettt 674
Lo o) (0] 1 TR 675
FAII() vttt bbb 676
FITT() ceeeeeer ettt bbb bbb bbb 677
FIEOS() ceeereeeeeerererieie ettt et b e 678
FIMEFTBOS vt e bbb 679
00100 () OSSR 683
FIEQ) +eneeteeet ettt bbb e b b e b et bbbt bbb 684
TOS() vverenerrererteseete st et re et r ettt s bbbt b et b e b ek e bt e b e Rt e Rt et et e et e be e ebe e 685
0 686
~HOS() vttt 687
TOSEBLE ...ttt e 688
ATV (o) S 689
(0] 0110700 [OOSR 690
(o]0 (] g1 (USSR 692
OPEIAOr VOIA * () .eveeeeeiiieeestees ettt ettt sttt 693
8= ol =T o OSSO U RS STPSPR 694
PWOPT() ettt ettt ettt b e bbbt et b et a s 695
FODUF() vttt st st st b e e ne e 696
[0S 1= SRS 697
SEEKAIT oottt 698
SEF() vttt ee 699
SEESEALE() -veuverereerester ettt sttt 700
SYNC_WIth SEAIO() eeveeeieeieie e e s 701
LCL= TR OSSOSOV 702

XX

Table of Contents

UNSELF() erveeeierereete ettt bbbt b s 703
WIAEN() ettt bbb 704
XAIOC() vttt b e bbb bbb 705
i0Stream Class DESCIIPLIONc.coueerieirieeriereete ettt 706
TOSITEAIM() .eveeeeereetere ettt ettt ettt e b e e b e b bbbt b ettt b e st neebeneebe s 707
TOSITEAIM() vttt ettt sttt et st st e bbbt et st e st et e seebese et e seebeseenens 708
10T == 0 1) S 709
105 =" 0 1 710
(010 ()) TS 711
OPEFBEON () veuveeeeeuee ettt ettt sttt sttt ettt b bt ae b b e e e et et eeae b ae e 712
iStream Class DESCITPLIONceoeierereriereie sttt e 713
EAWRITE() o.vviieieeet ettt bbb bbb 715
oo a0 o () ISP PP PP 716
1= () OSSPSR 717
OEL() eeveeerereetert ettt bbb bbbt b bbbt bbb 718
OEL() eevereerere ettt ettt bbbt b e bRt bR bRt nn s 719
01) 720
o1 1= 721
[T 1o (= () 722
TFX() +everereeretetreete sttt bbbttt n et 723
FSEX() veneeneemeemereen et e ettt st sttt sttt h e bR h e R bRt e b e e e e et e e eneenas 724
FSEFEAIMI() vveeetete ettt ettt s e e bt e et e e e e e e e st e heeaeeaeebesbesbeseesbeseeseenean 725
FSEFEAIMI() vttt ettt e b e et b et e et b et b et bt et ne b e e b e e b nnene s 726
FSEFEAIMI() vttt et e ettt bbbt b et et se e b e se et e e ebennebe s 727
~ISIFBAIM() ettt bbb 728
(oo 1< = 0] g) TSP 729
(0] (0) 730
(0] = (0]) RS 731
(010 (0]) ISR 732
(o]0l = (0] g) IR USRS 733
(o]0 (0] g) T USRS 734
(o]0 (0] g) ISR 735
(o]0 (] >) ISR 736
PEEK() cerereeteterereete sttt sttt sttt ettt bbbt e bRt e a et ne et bRt e ebenas 737
01011072 ot RO 738
== o TR 739
SEEKG() ervrrrerermrrerererere st re st e R s 740
SEEKO() ervrrreremrrereserereerer et re sttt R R 741
LS (o (S STR 742
BEIO() ottt 743
iStrstream Class DESCIIPLIONcccooeeeirieieerere et sre e 744
FSEFSIFEAM() .. venvereeeeeeee ettt ettt se e et ae et eae b e besaeseenbeseesnenean 745

XXi

Table of Contents

FSEFSIFEAM() . venveneereeeeee ettt ettt sttt ettt be st eae b s b e s b see b e snenean 746
IS S 1= 0 USRS 747
MBNIPUIBEONS ...ttt ettt b bbbttt b e 748
MANIPUIBEON EC() .euvvevenertiietire ettt 749
MANIPUIBEON ENAI() w.veeeeeeieieet e 750
MANIPUIBEON ENAS() w.vivevineetiietirie ettt 751
g o TH o TU = o g LU o 752
g g T LU= o gl 7= I 753
g o TH 10 1= o oo { (S 754
mani pulator reSetioSflags()eoeeererereeee e 755
MaNi PUIALOr SEEDESE() ...veveeeeeeeere e e 756
MaANTPUIALOT SEEFTTT() et 757
ManipUlator SEIOSFIAgS() ...eoveverereriereee e 758
MaNi PUIBLOr SEEPrECISION() .eveeevereeeereeierieie ettt 759
MANIPUIBEON SEEW() ettt bbbt 760
Manipulator SEWIALh()cooveiiee e 761
MENTPUIBEOT WS() 1.vveueeneeeeeeeeeiee et s e e s s e enesresaesneseenreseenrenean 762
of stream Class DESCIIPLION ...c.vcveeeeeececese s st sne e s 763
(05 ==) I 764
(oS == o) RS 765
OF SEFEAIM() ..ttt ettt sb b st b b e se et ae e e b b e b e 766
OF SEFEAIM() ..ottt ettt bt bbb e e et e ae e e ae b e b e 767
~OFSIEAM() .ottt 768
(o]0 1< o) ISP 769
0Stream ClassS DESCIIPLIONc.coviuiiiirieiereeie et 770
L1 772
(0] = (0] B) 773
(0] = (0] B) 774
(0101 = (0] B) ISR 775
(007 = (0] B0 () TSP 77
(o]0 = (0] GRS) TSRS 778
(o]0 (0] G0) ISP 779
(o]0 = (0] B0 () I OSSR 780
OPEIAIOL T() euveuetenerteeetere et ettt b bbbttt bbbt 781
(o< = o) g) TSRS 782
(o]0 5 ISR 783
015 784
(01 1 == 1 785
(01 1 == 1 786
(01 1= 1 TS 787
L8 LS 1= 10 0 TSSO 788
0101 RSSO RR 789

Table of Contents

SEEKII() erveeremeereeteserere ettt b ettt bbb bbb bR bbbkt bbb 790
SEEKII() ervrrrenerereeteienere ettt st bbbt b e bbb A b R A b bt E b bt e bbb e et 791
LC= 11 o TR TSSO 792
WITEE() ettt et ettt bbb 793
0Strstream Class DESCIIPLIONc..ciieirieirieerieesie ettt sbe e 794
(oIS = (== 0) TSP 795
(01 1 7=) [796
OIS = (=110) S 797
o Tox0TH 1 { () 798
SEF() ceeeeenere ettt bbb bbb bbb b 799
StAiODUF Class DESCITPLIONccciueriiriiirierie ettt s see e e 800
OVEFTIOW() e bbbttt s b e 801
LS [To] o U (ISP 802
L= [To] o U (ST 803
= 10 (o] 11 (S 804
LY 0) TSSO 805
0110 U= 1o 11 806
streambuf Class DESCIHPLIONccvciveieicire e re e sne 807
= [Tor= (=) 811
DASE() .ottt bbbt 812
BIEN() et et 813
0] o] o] IR OSSOSO 814
0O _STEIN() +veeeeereeeerte ettt 815
O _SPULN() ettt 816
(o [o7= | [aTor= = OSSOSO 817
<07 ot (T 818
BOUF() vt 819
L= 1 (S 820
L= 0] 11 () S 821
0] 010]00] o) IR USSR 822
0] L) TR USSR 823
1 T= YZ= 1 IR 824
OUE_WAITING() +euvevereerereerereeiertesesree sttt ettt ne e 825
OVEITIOW() vttt bbbt 826
8100224 = TS 827
81075 TS 828
0] 10 0] o) 829
0] 0 () 830
LS 0100007) TP 831
SEEKOFT() vttt bbb 832
S S (010 () SRRSO 833
SEED() vttt bbb bbb e bbbt 834

Table of Contents

SEHOUF() oot 835
LSS (o SRS 836
LS 1o IO 837
S0 < o (IO TSSOSO RSP PPP 838
SOELCHAIN() vevvereeeertee e e bbb 839
S0 < 1 TSSO 840
S =4 PSS 841
LS 0= (o) P 842
S 010110 7= ot (o (RSP S 843
oL 1ot PO PSPPSR 844
S 0L 110 TP 845
S (015 o (TSP 846
SEEAMDUT() vttt bbb e 847
SEEAMDUT() vttt 848
~SEFEAMDUF() vttt 849
LY 0) TSSOSO 850
00 001 == [851
01010 U= 1o 11 T 852
strstream Class DESCIIPLIONcviiieeireie et e e st ae e srestesaesrens 853
LS () TS 854
SIESEFEAIMI() ..ttt ettt sttt sttt b e b b et b et e e e et e e e e e e eneeneenesbesaeenens 855
SRS = 0) USSR 856
~SIFSEIEAMI() w.veeereeerieet ettt 857
strstreambase Class DESCHPLIONcoveiriririiirieereee e 858
FODUF() vttt bbb st st be e 859
SESFEAMDASE() ..evvveeeiereeierie ettt et b e s besnene s 860
SRS 7= 0107 S =) S 861
S LS L= 0= S (S 862
strstreambuf Class DESCIIPLIONc.ccvccveiieiciceeeee et se e e e e eneas 863
AllOC_SIZE INCIEMENT() .oiveeeeieeeie et e e sae e s tesnaesreenaenreens 865
(007 1 FoToxz = USSR 866
LS =745) SRR PURPORPRI 867
OVEITIOW() vttt 868
SEEKOFT() vttt ettt et 869
LS {01 ST 870
LS TSRS 871
S LS "= 001 01 SRS 872
S LS "= 001 00 O SRTRTRSRP 873
SRS "= 001 010 SRRSO 874
LS LS U= 0] T | 875
~SESIrEAMBUT() .oveee et e e 877
LS Y o (PSSR 878

Table of Contents

0070 (< g Fo 1 USSR 879
L SIINQG ClSS ...ttt ettt b bbbt e bt e et sb et b e sb s b en e enn 881
SUNG ClassS DESCIIPLION ...cvcuiieeieieeieriee ettt st 882
AllOC_MUIT_SIZE() et 884
01) ISR 885
101 S 886
=0T 11 1) 887
Lo Y= () 888
7= o T TS 889
(o]0 = (] g1 (ST 890
SEING OPEFALON T2() cuveeeeieeeee ettt et b se s 891
(o1 = (o) gl) IR OSSOSO 892
(o 1< = o) gl)) IR OSSOSO 893
S 10 o]0 1= = (o g (R 894
(o]0 (0]) 895
S 100 o]0 1= = (o AR (R 896
S 100 o]0 1= = (o AR (RSP TPR 897
S 100 o]0 1= = (o s (TSP TPS 898
OPEFBEON () eiuveeeeeeeeee ettt sttt ettt re ettt h bt ae b b e bbb et e e b ae e 899
SEING OPEFAEON ZZ() wevereeruerterteriereesie ettt ebe bbbt be e e e e b e e e e e e snennennens 900
S g1 o o]0 1< = o g (USRS 901
SUNG OPEFAION S=() eveeeveieeeeieete ettt 902
SING OPEFAION >>() oveeeviieeierieie ettt et 903
(o] 1< = o) gl |) IR OSSPSR 904
(o]0 1< = 0] gl ex o=) IS SOOI 905
(o0 == (0] ox =T o0 S Al S 906
10 L () 907
S 1 0o) 908
S o T TS 909
I 1o () ISR 910
IS 1o [ISR 911
SEFING() cveneereeerereer ettt et 912
~SHNG() ceeveeerereet e bbbt 913
870] 1< {) OSSP 914
SN VEITA() ot b 915
VATA() v 916

XXV

XXVi

Watcom C++ Class Library
Reference

Watcom C++ Class Library Reference

1 Header Files

The following header files are supplied with the C++ class library. When an object from the
library isto be manipulated with a function, the related header file should be included in the
sourcefile. Therelated header fileis shown in the synopsis for the function. The header files
provide the proper declarations for the functions and for the number and types of arguments
used with them. Constant values and enumerations used in conjunction with the functions are
also declared. Thefiles can beincluded in any order.

The following files are provided with the software. The header filesare all located in the
\ WATCOM Hor / usr /i ncl ude (QNX only) directory.

complex.h

except.h

fstream.h

generic.h

iomanip.h

iostream.h

This header file defines the Conpl ex class. The Conpl ex classisused to
perform complex arithmetic. The Conpl ex member functions are declared.
The related functions that manipulate Conpl ex objects are declared. Inline
member functions for the Conpl ex class are defined.

This header file provides declarations to be used with the exception handling
mechanism.

This header file definesthe f i | ebuf , f st r eanbase, i f stream

of streamand f st r eamclasses. These classes are used to perform C++ file
input and output operations. The various class members are declared and inline
member functions for the classes are defined.

This header fileis part of the macro support required prior to the implementation
of templatesin the C++ language. It isretained for backwards compatibility.

This header file contains the macro definitions required to implement the
parameterized manipulators in the absence of templates. It isretained for
backwards compatibility.

This header file definesthe i os,i stream ostreamandi ostream
classes. These classes form the basis of the C++ formatted input and output
support. The various class members are declared and inline member functions
for the classes are defined. The ci n, cout , cerr, and cl og predefined
objects are declared along with the non-parameterized manipulators.

Header Files 3

Watcom C++ Class Library Reference

4

new.h

stdiobuf.h

streambu.h

string.hpp

strstrea.h

wcdefs.h

wclbase.h
wclcom.h
wclibase.h

wclist.h

wclistit.h

wcqueue.h

wcstack.h

Header Files

This header file provides declarations to be used with the intrinsic
oper at or newand oper at or del et e memory management functions.

This header file definesthe st di obuf class which provides the support for the
C++ input and output operations to standard input, standard output, and standard
error streams. The various class members are declared and inline member
functions for the classes are defined.

This header file definesthe st r eanbuf class which provides the support for
buffering of input and output operations. The various class members are
declared and inline member functions for the classes are defined. This header
fileisautomatically included by the i ost r eam h header file.

This header file definesthe St ri ng class. The St ri ng classis used to
manipulate character strings. The St ri ng member functions are declared. The
related functions that manipulate St ri ng objects are declared. Inline member
functionsfor the St r i ng class are defined. Note that the hpp extension is used
to avoid colliding with the ANSI C st ri ng. h header file.

This header files definesthe st r st r eanbuf , st r st r eanbase,

i strstreamostrstreamandstrstreamclasses. These classes are
used to perform C++ in-memory formatting. The various class members are
declared and inline member functions for the classes are defined.

This header file contains definitions used by the container libraries. If a
container class needs any of these definitions, the file is automatically included.

This header file defines the base classes which are used by the list containers.
This header file defines the classes which are common to the list containers.
This header file defines the base classes which are used by the list iterators.

This header file definesthe | i st container classes. The available list container
classes are single and double linked versions of intrusive, value and pointer lists.

This header file definesthe i t er at or classesthat correspond to the list
containers.

This header file definesthe queue class. Entriesin aqueue class are accessed
firstin, first out.

This header file definesthe st ack class. Entriesin astack class are accessed
lastin, first out.

2 Common Types

The set of classes that make up the C++ class library use several common typedefs and
macros. They are declared in <i ost r eam h> and <f st r eam h>.

typedef |ong streanpos;
typedef |ong streanoff;
typedef int fil edesc;
#define __NOT_ECF O
#define EOF -1

The st r eanpos type represents an absolute position within the file. For Watcom C++, the
file position can be represented by an integral type. For some file systems, or at alower level
within the file system, the stream position might be represented by an aggregate (structure)
containing information such as cylinder, track, sector and offset.

Thest r eanof f type represents arelative position within the file. The offset can always be
represented as a signed integer quantity since it is a number of characters before or after an
absolute position within the file.

Thefi | edesc typerepresentsthetype of aC library file handle. Itisused in places where
the 1/0 stream library takes a C library file handle as an argument.

The __NOT_EOF macro is defined for cases where a function needs to return something other
than ECF to indicate success.

The EOF macro is defined to be identical to the value provided by the <st di 0. h> header
file.

Common Types 5

Watcom C++ Class Library Reference

6 Common Types

3 Predefined Objects

Most programs interact in some manner with the keyboard and screen. The C programming
language provides three values, st di n, st dout and st der r, that are used for
communicating with these "standard" devices, which are opened before the user program
starts execution at mai n() . Thesethree valuesare FI LE pointers and can be used in
virtually any file operation supported by the C library.

In asimilar manner, C++ provides seven objects for communicating with the same " standard"
devices. C++ providesthethree C FI LE pointers st di n, st dout and st der r, but they
cannot be used with the extractors and inserters provided as part of the C++ library. C++
provides four new objects, called ci n, cout, cerr and cl og, which correspond to st di n,
st dout, st der r and buffered st derr .

3.1cin

ci nisani st reamobject which is connected to "standard input" (usually the keyboard)
prior to program execution. Values extracted using the i st r eamoper at or >> class
extractor operators are read from standard input and interpreted according to the type of the
object being extracted.

Extractions from standard input via ci n skip whitespace characters by default because the
i 0s::ski pws bitison. The default behavior can be changed with the i 0s: : set f public
member function or withthe set i osf | ags manipulator.

3.2 cout

cout isan ost r eamobject which is connected to "standard output” (usually the screen)
prior to program execution. Valuesinserted using the ost r eamoper at or << class
inserter operators are converted to characters and written to standard output according to the
type of the object being inserted.

Insertions to standard output via cout are buffered by default becausethe i os: : uni t buf

bit isnot on. The default behavior can be changed with the i os: : set f public member
function or with the set i osf | ags manipulator.

cout 7

Watcom C++ Class Library Reference

3.3 cerr

cerr isan ost r eamobject which is connected to "standard error” (the screen) prior to
program execution. Valuesinserted using the ost r eamoper at or << classinserter
operators are converted to characters and written to standard error according to the type of the
object being inserted.

Insertions to standard error via cer r are not buffered by default because the
i 0s::unitbuf bitison. The default behavior can be changed withthe i os: : set f
public member function or with the set i osf | ags manipulator.

3.4 clog

8

cl og isan ost r eamobject which is connected to "standard error" (the screen) prior to
program execution. Valuesinserted using the ost r eamoper at or << classinserter
operators are converted to characters and written to standard error according to the type of the
object being inserted.

Insertions to standard error via cl og are buffered by default becausethe i os: : uni t buf
bit isnot on. The default behavior can be changed withthe i os: : set f public member
function or with the set i osf | ags manipulator.

clog

4 istream Input

This chapter describes formatted and unformatted input.

4.1 Formatted Input: Extractors

Theoper at or >> functionis used to read formatted values from astream. Itiscalled an
extractor. Characters are read and interpreted according to the type of object being extracted.

All oper at or >> functions perform the same basic sequence of operations. First, the input
prefix function i pf x is called with a parameter of zero, causing leading whitespace
charactersto be discarded if i 0s: : ski pws issetini os:: fmt fl ags. If theinput prefix
function fails and returns zero, the oper at or >> function also fails and returns
immediately. If theinput prefix function succeeds, characters are read from the stream and
interpreted in terms of the type of object being extractedand i os: : f nt f| ags. Findly, the
input suffix function i sf x iscalled.

Theoper at or >> functions return a reference to the specified stream so that multiple
extractions can be done in one statement.

Errorsareindicated viai os: : i ostate. i os::fail bit issetif the charactersread from
the stream could not be interpreted for the required type. i os: : badbi t issetif the
extraction of characters from the stream failed in such away as to make subsegquent
extractionsimpossible. i os: : eof bi t issetif the stream was |located at the end when the
extraction was attempted.

4.2 Unformatted Input

The unformatted input functions are used to read characters from the stream without
interpretation.

Like the extractors, the unformatted input functions follow a pattern. First, they call i pf x,
the input prefix function, with a parameter of one, causing no leading whitespace charactersto
be discarded. If the input prefix function fails and returns zero, the unformatted input
function also fails and returnsimmediately. If the input prefix function succeeds, characters

Unformatted Input 9

Watcom C++ Class Library Reference

are read from the stream without interpretation. Finally, i sf x, the input suffix function, is
called.

Errors areindicated viatheiostate bits. i os: : fai |l bi t issetif the extraction of characters
fromthe stream failed. i os: : eof bi t issetif the stream was located at the end of input

when the operation was attempted.

10 Unformatted Input

5 ostream Output

This chapter describes formatted and unformatted output.

5.1 Formatted Output: Inserters

Theoper at or << functionis used to write formatted valuesto astream. Itiscalled an
inserter. Values are formatted and written according to the type of object being inserted and
ios::fmtflags.

All oper at or << functions perform the same basic sequence of operations. First, the
output prefix function opf x iscalled. If it fails and returns zero, the oper at or <<
function also fails and returnsimmediately. If the output prefix function succeeds, the object
isformatted according to itstypeand i os: : f mt f| ags. The formatted sequence of
charactersis then written to the specified stream. Finally, the output suffix function osf x is
called.

Theoper at or << functionsreturn areference to the specified stream so that multiple
insertions can be done in one statement.

For details on the interpretation of i os: : f nt f | ags, seethei os: : fnt f | ags section of
the Library Functions and Types Chapter.

Errorsareindicated viai 0s: :i ostate. i 0os::fail bit issetifthe operator <<
function fails while writing the characters to the stream.

5.2 Unformatted Output

The unformatted output functions are used to write characters to the stream without
conversion.

Like the inserters, the unformatted output functions follow a pattern. First, they call the

output prefix function opf x and fail if it fails. Then the characters are written without
conversion. Finally, the output suffix function osf x iscalled.

Unformatted Output 11

Watcom C++ Class Library Reference

Errorsareindicated viai os: :i ostate. i os::fail bit issetif thefunction failswhile
writing the characters to the stream.

12 Unformatted Output

6 Library Functions and Types

Each of the classes and functionsin the Class Library is described in this chapter. Each
description consists of a number of subsections:

Declared: Thisoptional subsection specifies which header file contains the declaration for aclass. Itis
only found in sections describing class declarations.

Derived From:
This optional subsection shows the inheritance for aclass. It isonly found in sections
describing class declarations.

Derived By: Thisoptional subsection shows which classesinherit from thisclass. It isonly found in
sections describing class declarations.

Synopsis. This subsection gives the name of the header file that contains the declaration of the function.
This header file must be included in order to reference the function.

For class member functions, the protection associated with the function is indicated via the
presence of one of the pri vat e, pr ot ect ed, or publ i ¢ keywords.

The full function prototype is specified. Virtual class member functions are indicated viathe
presence of the vi rt ual keyword in the function prototype.

Semantics: This subsection is a description of the function.

Derived Implementation Protocol:
This optional subsection is present for virtual member functions. It describes how derived
implementations of the virtual member function should behave.

Default Implementation:
This optional subsection is present for virtual member functions. It describes how the default

implementation provided with the base class definition behaves.

Results: This optional subsection describes the function’s return value, if any, and the impact of a
member function on its object’s state.

SeeAlso: Thisoptiona subsection providesalist of related functions or classes.

Functions and Types 13

Watcom C++ Class Library Reference

14 Functions and Types

[Complex Class

This classis used for the storage and manipulation of complex numbers, which are often
represented by real and imaginary components (Cartesian coordinates), or by magnitude and
angle (polar coordinates). Each object stores exactly one complex number. An object may be
used in expressions in the same manner as floating-point values.

Complex Class 15

Complex

Declared: conpl ex. h

The Conpl ex classis used for the storage and manipulation of complex numbers, which are
often represented by real and imaginary components (Cartesian coordinates), or by
magnitude and angle (polar coordinates). Each Conpl ex object stores exactly one complex
number. A Conpl ex object may be used in expressions in the same manner as
floating-point values.

Public Member Functions
The following constructors and destructors are declared:

Conpl ex();

Conpl ex(Conpl ex const &);
Conpl ex(doubl e, double = 0.0);
~Conpl ex() ;

The following arithmetic member functions are declared:

Conpl ex &operator =(Conplex const &);
Conpl ex &operator =(double);

Conpl ex &operator +=(Conplex const &);
Conpl ex &operator +=(double);

Conpl ex &operator -=(Conplex const &);
Conpl ex &operator -=(double);

Conpl ex &operator *=(Conplex const &);
Conpl ex &operator *=(double);

Conpl ex &operator /=(Conplex const &);
Conpl ex &operator /=(double);

Conpl ex operator +() const;

Conpl ex operator -() const;

doubl e i mag() const;

doubl e real () const;

Friend Functions
The following I/O Stream inserter and extractor friend functions are declared:

friend i stream &perator >>(istream & Conmplex &);
friend ostream &operator <<(ostream & Conpl ex const &);

Related Operators
The following operators are declared:

Conpl ex operator +(Conplex const & Conplex const &);

16 Complex Class

Complex

Conpl ex
Conpl ex
Conpl ex
Conpl ex
Conpl ex
Conpl ex
Conpl ex
Conpl ex
Conpl ex
Conpl ex
Conpl ex
i nt
nt
nt
nt
nt

i
i
i
i
i
i nt

oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or

Related Functions

Conpl ex
doubl e
Conpl ex
Conpl ex
doubl e
Conpl ex
Conpl ex
doubl e
Conpl ex
Conpl ex
doubl e
Conpl ex
Conpl ex
doubl e
Conpl ex
Conpl ex
doubl e

const

const
const

const
const

const
const

const
const

const
const

R o R PR oo fo

The following related functions are declared:

doubl e
Conpl ex
Conpl ex
doubl e
Conpl ex
Conpl ex
Conpl ex
Conpl ex
Conpl ex
Conpl ex
Conpl ex
Conpl ex
doubl e
Conpl ex
Conpl ex
doubl e
Conpl ex
Conpl ex
Conpl ex
Conpl ex
Conpl ex
doubl e
Conpl ex
Conpl ex
Conpl ex

abs (Conpl ex const
acos (Conpl ex const
acosh(Conpl ex const
arg (Conpl ex const
asin (Conpl ex const
asi nh(Conpl ex const
atan (Conpl ex const
at anh(Conpl ex const

(Compl ex const
(Compl ex const
(Compl ex const
exp (Conpl ex const
[(Compl ex const
(Compl ex const

[0g10(Conpl ex const
norm (Conpl ex const

pol ar (doubl e
(Compl ex const
(Compl ex const
(doubl e
(Compl ex const

real (Conpl ex const
(
(
(

Conpl ex const
Conpl ex const
Conpl ex const

N e e e e e e e e N N N N N N

int);

R RoRoRoRE RoRo R0 R0 R0 R0 RO RD RO RO RO RO R0 R R0 RO Ro Ro

— N N

doubl e);
Conpl ex const
Conpl ex const
doubl e);
Conpl ex const
Conpl ex const
doubl e);
Conpl ex const
Conpl ex const
doubl e);
Conpl ex const
Conpl ex const
doubl e);
Conpl ex const
Conpl ex const
doubl e);
Conpl ex const

,"double = 0);
, Compl ex const &);
, double);

Conpl ex const &);

Complex Class

R PR RER R R RRo

~— — ~— — — — —

~— —

~

17

Complex

Conpl ex tan (Conplex const &);
Conpl ex tanh (Conpl ex const &);

18 Complex Class

Complex abs()

Synopsis. #i ncl ude <conpl ex. h>
doubl e abs(Conpl ex const &num);

Semantics: The abs function computes the magnitude of num, which is equivalent to the length
(magnitude) of the vector when the numis represented in polar coordinates.

Results: The abs function returns the magnitude of num.

SeeAlso: arg, norm pol ar

Complex Class 19

Complex acos()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex acos(Conpl ex const &num);

Semantics: Theacos function computes the arccosine of num.
Results: The acos function returns the arccosine of num.

See Also: asi n, at an, cos

20 Complex Class

Complex acosh()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex acosh(Conpl ex const &um);

Semantics: The acosh function computes the inverse hyperbolic cosine of num.
Results: The acosh function returns the inverse hyperbolic cosine of num.

See Also: asi nh, at anh, cosh

Complex Class 21

Complex arg()

Synopsis. #i ncl ude <conpl ex. h>
doubl e arg(Conpl ex const &num);

Semantics: Thear g function computes the angle of the vector when the numis represented in polar
coordinates. The angle has the same sign asthe real component of the num. It is positivein
the 1st and 2nd quadrants, and negative in the 3rd and 4th quadrants.

Results: The ar g function returns the angle of the vector when the numis represented in polar
coordinates.

SeeAlso: abs, norm pol ar

22 Complex Class

Complex asin()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex asin(Conpl ex const &num);

Semantics: Theasi n function computes the arcsine of num.
Results: The asi n function returns the arcsine of num.

See Also: acos, atan, sin

Complex Class 23

Complex asinh()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex asi nh(Conpl ex const &um);

Semantics: Theasi nh function computes the inverse hyperbolic sine of num.
Results: Theasi nh function returns the inverse hyperbolic sine of num.

See Also: acosh, at anh, si nh

24 Complex Class

Complex atan()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex atan(Conpl ex const &num);

Semantics: The at an function computes the arctangent of num.
Results: The at an function returns the arctangent of num.

See Also: acos, asin,tan

Complex Class 25

Complex atanh()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex atanh(Conpl ex const &um);

Semantics: Theat anh function computes the inverse hyperbolic tangent of num.
Results: The at anh function returns the inverse hyperbolic tangent of num.

See Also: acosh, asi nh, t anh

26 Complex Class

Complex::Complex()

Synopsis. #i ncl ude <conpl ex. h>
public:
Conpl ex: : Conpl ex();

Semantics: Thisform of the public Conpl ex constructor creates adefault Conpl ex object with value
zero for both the real and imaginary components.

Results: Thisform of the public Conpl ex constructor produces a default Conpl ex object.

SeeAlso: ~Conpl ex, real ,i mag

Complex Class 27

Complex::Complex()

Synopsis. #i ncl ude <conpl ex. h>
public:
Conpl ex: : Conmpl ex(Conpl ex const &ium);

Semantics: Thisform of the public Conpl ex constructor creates a Conpl ex object with the same
value as num.

Results: Thisform of the public Conpl ex constructor produces a Conpl ex object.

SeeAlso: ~Conpl ex, real ,i mag

28 Complex Class

Complex::Complex()

Synopsis. #i ncl ude <conpl ex. h>
public:

Conpl ex: : Conmpl ex(double real, double imag = 0.0);

Semantics: Thisform of the public Conpl ex constructor creates a Conpl ex object with the real
component set to real and the imaginary component set to imag. |f no imaginary component
is specified, imag takes the default value of zero.

Results: Thisform of the public Conpl ex constructor produces a Conpl ex object.

SeeAlso: ~Conpl ex, real ,i mag

Complex Class 29

Complex::~Complex()

Synopsis. #i ncl ude <conpl ex. h>
public:

Conpl ex: : ~Conpl ex() ;

Semantics: The public ~Conpl ex destructor destroysthe Conpl ex object. The call to the public
~Conpl ex destructor isinserted implicitly by the compiler at the point where the Conpl ex
object goes out of scope.

Results: The Conpl ex object is destroyed.

SeeAlso: Conpl ex

30 Complex Class

Complex conj()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex conj (Conpl ex const &num);

Semantics: Theconj function computes the conjugate of num. The conjugate consists of the
unchanged real component, and the negative of the imaginary component.

Results: The conj function returns the conjugate of num.

Complex Class 31

Complex cos()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex cos(Conpl ex const &um);

Semantics: The cos function computes the cosine of num.
Results: The cos function returns the cosine of num.

See Also: acos,sin,tan

32 Complex Class

Complex cosh()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex cosh(Conpl ex const &num);

Semantics: The cosh function computes the hyperbolic cosine of num.
Results: The cosh function returns the hyperbolic cosine of num.

See Also: acosh, si nh, t anh

Complex Class 33

Complex exp()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex exp(Conplex const &um);

Semantics: The exp function computes the value of e raised to the power num.
Results: The exp function returns the value of e raised to the power num.

SeeAlso: 1 0g,l 0gl0, pow, sqrt

34 Complex Class

Complex::imag()

Synopsis. #i ncl ude <conpl ex. h>
public:
doubl e Conpl ex: :imag();

Semantics: Thei mag public member function extracts the imaginary component of the Conpl ex
object.

Results: Thei mag public member function returns the imaginary component of the Conpl ex
object.

SeeAlso: i mag,real
Conpl ex: : real

Complex Class 35

Complex imag()

Synopsis. #i ncl ude <conpl ex. h>
doubl e i mag(Conpl ex const &um);

Semantics: Thei mag function extracts the imaginary component of hum.
Results: Thei mag function returns the imaginary component of num.

SeeAlso: real
Conpl ex: : i nmag, r eal

36 Complex Class

Complex log()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex 1 og(Conpl ex const &um);

Semantics: Thel og function computes the natural, or base e, logarithm of num.
Results: The | og function returns the natural, or base e, logarithm of num.

SeeAlso: exp,l 0gl0, pow, sqrt

Complex Class 37

Complex log10()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex 1 0g10(Conpl ex const &um);

Semantics: Thel og10 function computes the base 10 logarithm of hum.
Results: The |l 0g10 function returns the base 10 logarithm of num.

SeeAlso: exp, | og, pow, sqrt

38 Complex Class

Complex norm()

Synopsis. #i ncl ude <conpl ex. h>
doubl e norm(Conpl ex const &um);

Semantics: The nor mfunction computes the square of the magnitude of num, which is equivalent to the
square of the length (magnitude) of the vector when numis represented in polar coordinates.

Results: The nor mfunction returns the square of the magnitude of num.

SeeAlso: arg, pol ar

Complex Class 39

Complex operator !=()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <conpl ex. h>

int operator !=(Conplex const &numil, Conplex const &nun?);
i nt operator !=(Conpl ex const &numl, double nun?);

i nt operator !=(double numl, Conplex const &nun?);

Theoper at or ! = function compares numl and num2 for inequality. At least one of the
parameters must be a Conpl ex object for this function to be called.

Two Conpl ex objects are not equal if either of their corresponding real or imaginary
components are not equal.

If theoper at or ! =function isused with a Conpl ex object and an object of any other
built-in numeric type, the non- Conpl ex object is converted to a doubl e and the second or
third form of the oper at or ! =function isused.

Theoper at or ! = function returns a non-zero value if numl is not equal to num2,
otherwise zero is returned.

operator ==

40 Complex Class

Complex operator *()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <conpl ex. h>

Conpl ex operator *(Conpl ex const &numil,
Conpl ex const &nun?);

Conpl ex operator *(Conpl ex const &numil,
doubl e nun?);

Conpl ex operator *(double numt,

Conpl ex const &nun?);

Theoper at or * function isused to multiply numl by num2 yielding a Conpl ex object.
Thefirst oper at or * function multipliestwo Conpl ex objects.

The second oper at or * function multipliesa Conpl ex object and a floating-point value.
In effect, the real and imaginary components of the Conpl ex abject are multiplied by the
floating-point value.

Thethird oper at or * function multiplies a floating-point value and a Conpl ex object.
In effect, the real and imaginary components of the Conpl ex object are multiplied by the
floating-point value.

If theoper at or * function isused with a Conpl ex object and an object of any other
built-in numeric type, the non- Conpl ex object is converted to a doubl e and the second or

third form of the oper at or * function is used.

Theoper at or * function returnsa Conpl ex object that is the product of huml and
num2.

operator +,operator -,operator /
Conpl ex: : operator *=

Complex Class 41

Complex::operator *=()

Synopsis. #i ncl ude <conpl ex. h>
public:
Conpl ex &Conpl ex: : operator *=(Conpl ex const &um);
Conpl ex &Conpl ex: : operator *=(double num);

Semantics: Theoper at or *= public member function is used to multiply the num argument into the
Conpl ex object.

Thefirst form of the oper at or * = public member function multiplies the Conpl ex
object by the Conpl ex parameter.

The second form of the oper at or * = public member function multiplies the real and
imaginary components of the Conpl ex object by num.

A cal tothe oper at or * = public member function where numis any of the other built-in
numeric types, causes num to be promoted to doubl e and the second form of the
oper at or *= public member function to be used.

Results: Theoper at or * = public member function returns areference to the target of the
assignment.

SeeAlso: operator *
Conpl ex: : oper ator +=, operator -=,operator /=, operator =

42 Complex Class

Complex::operator +()

Synopsis. #i ncl ude <conpl ex. h>
public:
Conpl ex Conpl ex: : operator +();

Semantics: Theunary oper at or + public member function is provided for completeness. It performs
no operation on the Conpl ex object.

Results: The unary oper at or + public member function returnsa Conpl ex object with the same
value as the original Conpl ex object.

SeeAlso: operator +
Conpl ex: : oper ator +=, operator -

Complex Class 43

Complex operator +()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex operator +(Conpl ex const &numil,
Conpl ex const &nun?);
Conpl ex operator +(Conpl ex const &numil,
doubl e nun?);
Conpl ex operator +(double numt,
Conpl ex const &nun?);

Semantics: Theoper at or + function isused to add numl to num2 yielding a Conpl ex object.
Thefirst oper at or + function addstwo Conpl ex objects.

The second oper at or + function addsa Conpl ex object and a floating-point value. In
effect, the floating-point value is added to the real component of the Conpl ex object.

The third oper at or + function adds a floating-point value and a Conpl ex object. In
effect, the floating-point value is added to the real component of the Conpl ex object.

If the oper at or + function isused with a Conpl ex object and an object of any other
built-in numeric type, the non- Conpl ex object is converted to a doubl e and the second or
third form of the oper at or + function is used.

Results: Theoper at or + function returnsa Conpl ex object that is the sum of numl and humz2.

SeeAlso: operator *,operator -,operator /
Conpl ex: : operator +, operator +=

44 Complex Class

Complex::operator +=()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <conpl ex. h>

public:

Conpl ex &Conpl ex: : operator +=(Conpl ex const &um);
Conpl ex &Comnpl ex: : operator +=(double num);

Theoper at or += public member function is used to add num to the value of the
Conpl ex object. The second form of the oper at or += public member function adds
numto the real component of the Conpl ex object.

A cadl tothe oper at or += public member function where numis any of the other built-in
numeric types, causes hum to be promoted to doubl e and the second form of the
oper at or += public member function to be used.

Theoper at or += public member function returns areference to the target of the
assignment.

operator +

Conpl ex: : operator *=, operator +,operator /=, operator -=,
operator =

Complex Class 45

Complex::operator -()

Synopsis. #i ncl ude <conpl ex. h>
public:
Conpl ex Conpl ex: : operator -();

Semantics: Theunary oper at or - public member function yieldsa Conpl ex object with the real
and imaginary components having the same magnitude as those of the original object, but
with opposite sign.

Results: Theunary oper at or - public member function returnsa Conpl ex object with the same
magnitude as the original Conpl ex object and with opposite sign.

SeeAlso: operator -
Conpl ex: : operat or +, operator -=

46 Complex Class

Complex operator -()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <conpl ex. h>

Conpl ex operator -(Conpl ex const &numil,
Conpl ex const &nun?);

Conpl ex operator -(Conplex const &numil,
doubl e nun?);

Conpl ex operator -(double numt,

Conpl ex const &nun?);

Theoper at or - functionis used to subtract num2 from numl yielding a Conpl ex
object.

Thefirst oper at or - function computes the difference between two Conpl ex objects.

The second oper at or - function computes the difference between a Conpl ex object and
afloating-point value. In effect, the floating-point value is subtracted from the real
component of the Conpl ex object.

Thethird oper at or - function computes the difference between a floating-point value
and a Conpl ex object. In effect, the real component of the result is numl minusthe real
component of num2 :CONT, and the imaginary component of the result is the negative of the
imaginary component of num?2.

If theoper at or - functionisused with a Conpl ex object and an object of any other
built-in numeric type, the non- Conpl ex object is converted to a doubl e and the second or
third form of the oper at or - function isused.

Theoper at or - function returnsa Conpl ex object that is the difference between numil
and num2.

operator *,operator +, operator /
Conpl ex: : operator -,operator -=

Complex Class 47

Complex::operator -=()

Synopsis. #i ncl ude <conpl ex. h>
public:
Conpl ex &Conpl ex: : operator -=(Conplex const &um);
Conpl ex &Comnpl ex: : operator -=(double num);

Semantics: Theoper at or - = public member function is used to subtract num from the value of the
Conpl ex object. The second form of the oper at or - = public member function
subtracts num from the real component of the *aby..

A cadl tothe oper at or - = public member function where numis any of the other built-in
numeric types, causes hum to be promoted to doubl e and the second form of the
oper at or - = public member function to be used.

Results: Theoper at or - = public member function returns areference to the target of the
assignment.

SeeAlso: operator -

Conpl ex: : operator *=, operator +=, operator -,operator /=,
operator =

48 Complex Class

Complex operator /()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <conpl ex. h>

Conpl ex operator /(Conpl ex const &numil,
Conpl ex const &nun?);

Conpl ex operator /(Conpl ex const &numil,
doubl e nun?);

Conpl ex operator /(double numt,

Conpl ex const &nun?);

Theoper at or / functionis used to divide numl by num2 yielding a Conpl ex object.
Thefirst oper at or / function dividestwo Conpl ex objects.

The second oper at or / function dividesa Conpl ex object by afloating-point value. In
effect, the real and imaginary components of the complex number are divided by the
floating-point value.

Thethird oper at or / function divides afloating-point value by a Conpl ex object.
Conceptually, the floating-point valueis converted to a Conpl ex object and then the
division is done.

If theoper at or / functionisused with a Conpl ex object and an object of any other
built-in numeric type, the non- Conpl ex object is converted to a doubl e and the second or

third form of the oper at or / function isused.

Theoper at or / function returnsa Conpl ex object that is the quotient of num1 divided
by num?2.

operator *,operator +,operator -
Conpl ex: : operator /=

Complex Class 49

Complex::operator /=()

Synopsis. #i ncl ude <conpl ex. h>
public:
Conpl ex &Conpl ex: : operator /=(Conplex const &um);
Conpl ex &Comnpl ex: : operator /=(double num);

Semantics: Theoper at or / = public member function is used to divide the Conpl ex object by num.
The second form of the oper at or / = public member function divides the real and
imaginary components of the Conpl ex object by num.

A cadl tothe oper at or / = public member function where numis any of the other built-in
numeric types, causes num to be promoted to doubl e and the second form of the
oper at or /= public member function to be used.

Results: Theoper at or / = public member function returns areference to the target of the
assignment.

SeeAlso: operator /
Conpl ex: : operator *=, operator += operator -=,operator =

50 Complex Class

Complex operator <<()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <conpl ex. h>
friend ostream &operator <<(ostream &trm Conplex &um);

Theoper at or << functionisused to write Conpl ex objectsto an I/O stream. The
Conpl ex object isaways written in the form:

(real,inmg)

Therea and imaginary components are written using the normal rules for formatting
floating-point numbers. Any formatting options specified prior to inserting the num apply to
both the real and imaginary components. If the real and imaginary components are to be
inserted using different formats, the r eal and i nag member functions should be used to
insert each component separately.

Theoper at or << function returns a reference to the strm object.

i stream

Complex Class 51

Complex::operator =()

Synopsis. #i ncl ude <conpl ex. h>
public:
Conpl ex &Compl ex: : operator =(Compl ex const &num);
Conpl ex &Compl ex: : operator =(double num);

Semantics: Theoper at or = public member function is used to set the value of the Conpl ex object
to num. The first assignment operator copies the value of numinto the Conpl ex object.

The second assignment operator sets the real component of the Conpl ex object to numand
the imaginary component to zero.

A cal tothe oper at or = public member function where numis any of the other built-in
numeric types, causes hum to be promoted to doubl e and the second form of the
oper at or = public member function to be used.

Results: Theoper at or = public member function returns a reference to the target of the
assignment.

SeeAlso: Conmpl ex: : operator *=, operator +=, operator -=,operator /=

52 Complex Class

Complex operator ==()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <conpl ex. h>

i nt operator ==(Conpl ex const &numl, Conplex const &nun?);
i nt operator ==(Conpl ex const &numl, double nun?);

i nt operator ==(doubl e numl, Conplex const &nun?);

Theoper at or == function compares numl and num2 for equality. At least one of the
arguments must be a Conpl ex object for this function to be called.

Two Conpl ex objects are equal if their corresponding real and imaginary components are
equal.

If the oper at or == function isused with a Conpl ex object and an object of any other
built-in numeric type, the non- Conpl ex object is converted to a doubl e and the second or
third form of the oper at or == function isused.

Theoper at or == function returns a non-zero value if numl is equal to num2, otherwise
zero isreturned.

operator !=

Complex Class 53

Complex operator >>()

Synopsis. #i ncl ude <conpl ex. h>
friend istream &perator >>(istream &trm Conplex &um);

Semantics: Theoper at or >> functionisused to read a Conpl ex object from an I/O stream. A valid
complex value is of one of the following forms:

(real,inmg)
real,img
(real)

If the imaginary portion is omitted, zero is assumed.

While reading a Conpl ex object, whitespace isignored before and between the various
components of the number if the i 0s: : ski pws bitissetini os:: fntfl ags.

Results: Theoper at or >> function returns areference to strm. num contains the value read from
strmon success, otherwiseit is unchanged.

See Also: i stream

54 Complex Class

Complex polar()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <conpl ex. h>
Conpl ex pol ar(doubl e mag, double angle = 0.0);

The pol ar function converts mag and angle (polar coordinates) into a complex number.
The angleis optional and defaultsto zero if it is unspecified.

Thepol ar function returnsa Conpl ex object that is mag and angle interpreted as polar
coordinates.

abs,arg,norm

Complex Class 55

Complex pow()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex pow(Conpl ex const &um Conpl ex const &exp);
Conpl ex pow(Conpl ex const &um doubl e exp);
Conpl ex pow(doubl e num Conpl ex const &exp);
Conpl ex pow(Conpl ex const &um int exp);

Semantics. The pow function computes num raised to the power exp. The various forms are provided to
minimize the amount of floating-point calcul ation performed.

Results: The powfunction returnsa Conpl ex object that is num raised to the power a Conpl ex
object that is exp.

SeeAlso: exp,l og,l 0gl0,sqrt

56 Complex Class

Complex::real()

Synopsis. #i ncl ude <conpl ex. h>
public:
doubl e Conpl ex::real ();
Semantics: Ther eal public member function extracts the real component of the Conpl ex object.

Results: Ther eal public member function returns the real component of the Conpl ex object.

SeeAlso: i mag,real
Conpl ex: : i nmag

Complex Class 57

Complex real()

Synopsis. #i ncl ude <conpl ex. h>
doubl e real (Conpl ex const &um);

Semantics: Ther eal function extractstherea component of num.
Results: Ther eal function returnsthe real component of num.

SeeAlso: i mag
Conpl ex: : i mag, r eal

58 Complex Class

Complex sin()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex sin(Conplex const &um);

Semantics: Thesi n function computes the sine of num.
Results: The si n function returns the sine of num.

See Also: asi n,cos,tan

Complex Class 59

Complex sinh()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex sinh(Conpl ex const &num);

Semantics: Thesi nh function computes the hyperbolic sine of num.
Results: The si nh function returns the hyperbolic sine of num.

See Also: asi nh, cosh, t anh

60 Complex Class

Complex sqrt()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex sqrt(Conpl ex const &num);

Semantics: Thesqrt function computes the square root of hum.
Results: Thesqrt function returns the square root of num.

SeeAlso: exp, | og,l 0g10, pow

Complex Class 61

Complex tan()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex tan(Conpl ex const &um);

Semantics: Thet an function computes the tangent of num.
Results: Thet an function returns the tangent of num.

See Also: at an, cos, sin

62 Complex Class

Complex tanh()

Synopsis. #i ncl ude <conpl ex. h>
Conpl ex tanh(Conpl ex const &num);

Semantics: Thet anh function computes the hyperbolic tangent of num.
Results: Thet anh function returns the hyperbolic tangent of num.

See Also: at anh, cosh, si nh

Complex Class 63

Complex tanh()

64 Complex Class

8 Container Exception Classes

This chapter describes exception handling for the container classes.

Container Exception Classes 65

WCEXxcept

Declared: wcexcept. h

The WCEXcept class provides the exception handling for the container classes. If you have
compiled your code with exception handling enabled, the C++ exception processing can be
used to catch errors. Y our source file must be compiled with the exception handling compile
switch for C++ exception processing to occur. The container classes will attempt to set the
container object into areasonable state if thereis an error and exception handling is not
enabled, or if the trap for the specific error has not been enabled by your program.

By default, no exception traps are enabled and no exceptions will be thrown. Exception traps
are enabled by setting the exception state with the except i ons member function.

Thewcexcept . h header fileisincluded by the header files for each of the container
classes. Thereisnormally no need to explicitly include the wcexcept . h header file, but
no errorswill result if itisincluded. Thisclassisinherited as a base class for each of the
containers. Y ou do not need to derive from it directly.

TheWCLi st Except class (formally used by the list container classes) has been replaced by
the WCExcept class. A typedef of the WCLi st Except classto the WCExcept classand
thewcl i st _st at e typeto the wc _st at e type provide backward compatability with
previous versions of the list containers.

Public Enumerations

The following enumeration typedefs are declared in the public interface:

typedef int wc _state;

Public Member Functions

The following public member functions are declared:

WCEXxcept () ;

virtual ~WCExcept();

wc_state exceptions() const;
wc_state exceptions(we_state);

66 Container Exception Classes

WCExcept::WCExcept()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wcexcept. h>

public:

WCEXxcept () ;

Thisform of the public WCExcept constructor creates an WCExcept object.

The public WCExcept constructor is used implicitly by the compiler when it generates a
constructor for aderived class. It isautomatically used by the list container classes, and
should not be required in any user derived classes.

The public WCEXcept constructor produces an initialized WCExcept object with no
exception traps enabled.

~WCEXxcept

Container Exception Classes 67

WCExcept::~WCExcept()

Synopsis: #i ncl ude <wcexcept. h>
public:
virtual ~WCExcept();

Semantics: The public ~\WCExcept destructor does not do anything explicit. The call to the public
~WCExcept destructor isinserted implicitly by the compiler at the point where the object
derived from WCExcept goes out of scope.

Results: The object derived from WCExcept is destroyed.

SeeAlso: WCExcept

68 Container Exception Classes

WCEXxcept:.exceptions()

Synopsis:

Semantics:

Results:

#i ncl ude <wcexcept. h>

public:

wc_state exceptions() const;

wc_state exceptions(we_state set _flags);

Theexcept i ons public member function queries and/or sets the bits that control which
exceptions are enabled for the list class. Each bit corresponds to an exception, and is set if
the exception isenabled. Thefirst form of the except i ons public member function
returns the current settings of the exception bits. The second form of the function sets the
exception bitsto those specified by set_flags.

The current exception bits are returned. If anew set of bits are being set, the returned value
isthe old set of exception bits.

Container Exception Classes 69

WCEXxcept::wc_state

Synopsis:

Semantics:

#i ncl ude <wcexcept. h>

public:

enum west at e {

all _fine = 0x0000, // - no errors

check_none = all fine,// - throw no exceptions

not _enpty = 0x0001, // - container not enpty

i ndex_range = 0x0002, // - index is out of range
enpty_cont ai ner= 0x0004, // - enpty container error
out of nmenory = 0x0008, // - allocation failed
resi ze requi red= 0x0010, // - request needs resize
not _uni que = 0x0020, // - adding duplicate
zero_buckets = 0x0040, // - resizing hash to zero
/1 value to use to check for all errors

check_all = (not _enpty|index_range| enpty_cont ai ner
| out _of _nenory|resize_required

| not _uni que| zer o_bucket s)

tg/pedef int wc_state;

Thetype WCEXcept : : west at e isaset of bits representing the current state of the
container object. The WCExcept : : we_st at e member typedef represents the same set of
bits, but usesan i nt to represent the values, thereby avoiding problems made possible by
the compiler’s ability to use smaller types for enumerations. All uses of these bits should use
the WCExcept : : we _st at e member typedef.

The bit values defined by the WCEx cept : : we _st at e member typedef can be read and set
by the except i ons member function, which is also used to control exception handling.

The WCEXcept : : not _enpt y bit setting traps the destruction of a container when the
container has at one or more entries. If thiserror is not trapped, memory may not be properly
released back to the system.

The WCEXcept : : i ndex_r ange state setting traps an attempt to access a container item
by an index value that is either not positive or islarger than the index of the last itemin the
container.

The WCEXxcept : : enpt y_cont ai ner bit setting traps an attempt to perform and invalid
operation on a container with no entries.

The WCEXcept : : out _of _nmenor y bit setting traps any container class allocation
failures. If thisexception is not enabled, the operation in which the allocation failed will
return a FAL SE (zero) value. Container class copy constructors and assignment operators
can also throw this exception, and if not enabled incomplete copies may result.

70 Container Exception Classes

WCExcept::wc_state

The WCEXcept : : resi ze_r equi r ed bit setting traps any vector operations which
cannot be performed unless the vector isresized to alarger size. If thisexception is not
enabled, the vector class will attempt an appropriate resize when necessary for an operation.

The WCEXcept : : not _uni que bit setting traps an attempt to add a duplicate value to a
set container, or a duplicate key to adictionary container. The duplicate valueis not added
to the container object regardless of the exception trap state.

The WCEXcept : : zer o_bucket s bit setting traps an attempt to resize of hash container
to have zero buckets. No resizeis performed whether or not the exception is enabled.

Container Exception Classes 71

WClterExcept

Declared: wcexcept. h

TheWCl t er Except class provides the exception handling for the container iterators. If
you have compiled your code with exception handling enabled, the C++ exception
processing can be used to catch errors. Y our source file must be compiled with the exception
handling compile switch for C++ exception processing to occur. The iterators will attempt to
set the class into areasonable state if there is an error and exception handling is not enabled,
or if the trap for the specific error has not been enabled by your program.

By default, no exception traps are enabled and no exceptions will be thrown. Exception traps
are enabled by setting the exception state with the except i ons member function.

Thewcexcept . h header fileisincluded by the header files for each of the iterator classes.
Thereis normally no need to explicitly include the wcexcept . h header file, but no errors
will result if itisincluded. Thisclassisinherited as part of the base construction for each of
theiterators. Y ou do not need to derive from it directly.

Public Enumerations

The following enumeration typedefs are declared in the public interface:

typedef int wciter_state;

Public Member Functions

The following public member functions are declared:

WCI t er Except () ;

virtual ~WClterExcept();

wciter _state exceptions() const;
wciter _state exceptions(wciter_state);

72 Container Exception Classes

WClterExcept::WClterExcept()

Synopsis: #i ncl ude <wcexcept. h>
public:
WCI t er Except () ;
Semantics: Thisform of the public WCI t er Except constructor creates an WCI t er Except object.

The public WCI t er Except constructor is used implicitly by the compiler when it generates
aconstructor for aderived class.

Results: The public WCI t er Except constructor produces an initialized WCI t er Except object
with no exception traps enabled.

SeeAlso: ~WClt er Except

Container Exception Classes 73

WClterExcept::~WClterExcept()

Synopsis: #i ncl ude <wcexcept. h>
public:
virtual ~WClterExcept();

Semantics: The public ~WCl t er Except destructor does not do anything explicit. The call to the
public ~\WCI t er Except destructor isinserted implicitly by the compiler at the point where
the object derived from WCI t er Except goes out of scope.

Results: The object derived from WCI t er Except isdestroyed.

SeeAlso: WCl ter Except

74 Container Exception Classes

WClterExcept::exceptions()

Synopsis:

Semantics:

Results:

#i ncl ude <wcexcept. h>

public:

wciter _state exceptions() const;

wciter _state exceptions(wciter_state set_flags);

Theexcept i ons public member function queries and/or sets the bits that control which
exceptions are enabled for the iterator class. Each bit corresponds to an exception, and is set
if the exception is enabled. Thefirst form of the except i ons public member function
returns the current settings of the exception bits. The second form of the function sets the
exception bitsto those specified by set_flags.

The current exception bits are returned. If anew set of bits are being set, the returned value
isthe old set of exception bits.

Container Exception Classes 75

WClterExcept::wciter_state

Synopsis: #i ncl ude <wcexcept. h>
public:
enum wciterstate {
all _fine = 0x0000, // - no errors
check_none all _fine,// - disable all exceptions
undef _i ter 0x0001, // - position is undefined
undef _item = 0x0002, // - iterator itemis undefined
iter _range 0x0004, // - advance value is bad
/1l value to use to check for all errors
check _al |l = (undef _iter|undef _itemiter _range)
1

typedef int wciter_state;

Semantics: ThetypeWCl t er Except : : wei t er st at e isaset of bits representing the current state of
theiterator. The WCI t er Except : : wei t er _st at e member typedef represents the same
set of bits, but usesan i nt to represent the values, thereby avoiding problems made possible
by the compiler’s ability to use smaller types for enumerations. All uses of these bits should
usethe WCl t er Except : : wei t er _st at e member typedef.

The bit values defined by the WCI t er Except : : wei t er _st at e member typedef can be
read and set by the member function except i ons, which is used to control exception
handling.

TheWCl t er Except : : undef _i t er bit setting traps the use of the iterator when the
position within the container object is undefined. Trying to operate on an iterator with no
associated container object, increment an iterator which is after the last element, or
decrement an iterator positioned before the first element is an undefined operation.

TheWCl t er Except : : undef _i t embit setting traps an attempt to obtain the current
element of the iterator when the iterator has no associated container object, or is positioned
either before or after the container elements. The undef _i t emexception can be thrown
only by the key and val ue dictionary iterator member functions, and the cur r ent
member function for non-dictionary iterators.

TheWCl t er Except : @it er _range hit setting traps an attempt to use a iteration count
value that would place the iterator more than one element past the end or before the
beginning of the container elements. The i t er _r ange exception can be thrown only by
theoper at or +=and oper at or - = operators.

76 Container Exception Classes

O Container Allocators and Deallocators

Example

#i ncl ude <i ostream h>
#i ncl ude <wclist. h>
#i nclude <wclistit. h>
#i ncl ude <wcski p. h>
#i ncl ude <weski pit. h>
#i ncl ude <stdlib. h>

#pragma warni ng 549 9

const int ElenmsPerBlock = 50

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

c

Sinple block allocation class. Allocate blocks for El ensPerBl ock

el ements, and use part of the block for each of the next El emsPerBl ock
al l ocations, incrementing the nunber allocated el ements. Repeat getting
nore bl ocks as needed.

Store the blocks in an intrusive single |linked |ist.

On a el enent deal |l ocation, assune we allocated the nmenory and j ust
decrenment the count of allocated elenents. Wen the count gets to zero
free all allocated bl ocks

This inplenmentati on assunmes sizeof (char) == 1

ass Bl ockAll oc {

private:

/1 the size of elements (in bytes)
unsi gned el em si ze

/! nunber of elenents allocated
unsi gned num_al | ocat ed

/'l free space of this nunber of elements available in first block
unsi gned num_free_i n_bl ock

/1 list of blocks used to store elenments (block are chunks of nenory,
/1 pointed by (char *) pointers.
WCPt r SLi st <char > bl ock_li st;

// pointer to the first block in the |ist
char *curr _bl ock

public

inl'ine Bl ockAlloc(unsigned size)

Container Allocators and Deallocators 77

WClterExcept::wciter_state

el em.si ze(size), num.allocated(0)
, numfree_in_block(0) {};

inline BlockAlloc() {
bl ock_Ii st.cl ear AndDestroy();
b

/1 get nenory for an el ement using block allocation
void *allocator(size_t elemsize);

/1 free nenory for an el enent using block allocation and deal | ocation
voi d deal l ocator(void *old_ptr, size_t elemsize);

3

voi d *Bl ockAl | oc::allocator(size_t size) {
/1 need a new block to performallocation
if(numfree_in_block == 0) {
/1 allocate nmenory for El ensPerBl ock el enents
curr _block = new char[size * El emsPerBl ock];
if(curr_block == 0) {
/1 allocation failed
return(0);

/1 add new bl ock to beginning of |ist

if(!'block_list.insert(curr_block)) {
/1 allocation of list elenent failed
del ete(curr_block);
return(0);

}

num_free_i n_bl ock = El emsPer Bl ock;

}

/1 curr block points to a block of menory with sonme free nmenory
num_al | ocat ed++;

num_free_i n_bl ock--;

/1 return pointer to a free part of the block, starting at the end
/1 of the bl ock

return(curr _block + numfree_in_block * size);

void Bl ockAl |l oc::deal |l ocator(void *, size_t) {

/1 just decrenent the count

/1 don't free anything until all elenents are deall ocated

num.al | ocat ed- -;

i f(num.allocated == 0)
/1 all the elenents allocated Bl ockAl |l oc object have now been
// deal |l ocated, free all the bl ocks
bl ock_l i st.cl ear AndDestroy();
num free_i n_block = 0;

const unsi gned NuniTest El ems = 200;

78 Container Allocators and Deallocators

Container Allocators and Deallocators

/1 array with random el enents
static unsigned test_el ens[NunilestEl ens];

static void fill _test_elens() {
for(int i =0; i < NunifestEl ens; i++) {
test _elens[i] = rand();
}

void test _isv_list();
void test _val _list();
void test val _skip_list();

void main() {
fill _test_elens();
test _isv_list();

test val _list();
test _val _skip_list();

/1 An intrusive list class

class isvint : public WCSLink {

public:
static Bl ockAl | oc nmenory_nanage;
int dat a;

isvint(int datum) : data(datum) {};
void *operator new size_ t size) {

return(nmenory_manage. al | ocator(size));
b

voi d operator delete(void *old, size_t size) {
menor y_nmanage. deal | ocator(old, size);
}

H
/1 define static nmenber data
Bl ockAl | oc isvlnt::nenory_nanage(sizeof(isvint));
void test _isv_list() {
WCl svSLi st<isvint> |ist;
for(int i =0; i < NunifestEl ens; i++) {

list.insert(newisvint(test elems[i]));
}

WCl svSListlter<isvint> iter(list);
while(++iter) {

cout << iter.current()->data << " ";
}

Container Allocators and Deallocators 79

WClterExcept::wciter_state

cout << "\n\n\n";
l'i st.clearAndDestroy();

/1 WCVal SLi st<int> nenory al | ocator/deal | octor support
static Bl ockAlloc val _|ist_manager(WCVal SListltenSize(int));

static void *val _list_alloc(size_t size) {
return(val _li st _nmanager. all ocator(size));
}
static void val _list_dealloc(void *old, size_t size) {
val _| i st _manager. deal | ocator(old, size);
}
/1 test WCVal SLi st <int>
void test _val _list() {
WCVal SLi st<int> list(&al _list_alloc, &val _list_dealloc);
for(int i =0; i < NunifestEl ens; i++) {

list.insert(test _elenms[i]);

}

WCVal SListlter<int> iter(list);
while(++iter) {
cout << iter.current() << " ";

cout << "\n\n\n";
list.clear();

/1 skip list allocator dealloctors: just use allocator and deall octor
/1 functions on skip list elenments with one and two pointers

/1 (this will handle 94% of the el enents)

const int one_ptr_size = WCVal Ski pListltenSize(int, 1);
const int two_ptr_size = WCVal Ski pListltenSize(int, 2);

static Bl ockAl | oc one_ptr_manager(one_ptr_size);
static BlockAl loc two_ptr_manager(two_ptr_size);

static void *val skip_list_alloc(size t size) {
switch(size) {

case one_ptr _size:

return(one_ptr _nanager.allocator(size));
case two_ptr _size:

return(two_ptr_nanager.allocator(size));
defaul t:

return(new char[size]);

}

static void val _skip_list_dealloc(void *old, size_t size) {
switch(size) {
case one_ptr _si ze:
one_ptr _manager. deal | ocator(old, size);
br eak;

80 Container Allocators and Deallocators

Container Allocators and Deallocators

case two_ptr _size:
two_ptr _manager. deal | ocator(old, size);
br eak;
defaul t:
del ete ol d;
br eak;

/1 test WCVal Ski pLi st <i nt>
void test _val _skip_list() {
WCVal Ski pLi st <i nt> skiplist(WCSKI PLI ST_PROB_QUARTER
, WCDEFAULT _SKI PLI ST_MAX_PTRS
, &val _skip_list_alloc
, &al _skip_list_dealloc);

for(int i =0; i < NunifestEl ens; i++) {
skiplist.insert(test_elems[i]);
}

WCVal Ski pListlter<int> iter(skiplist);
while(++iter) {
cout << iter.current() << " ";

cout << "\n\n\n";
skiplist.clear();

Container Allocators and Deallocators 81

WClterExcept::wciter_state

82 Container Allocators and Deallocators

10 Hash Containers

This chapter describes hash containers.

Hash Containers 83

WCPtrHashDict<Key,Value>

Declared: wchash. h

The WCPt r HashDi ct <Key, Val ue> classis atemplated class used to store objectsin a
dictionary. Dictionaries store values with an associated key, which may be of any type. One
example of adictionary used in everyday life is the phone book. The phone numbers are the
data values, and the customer name isthe key. An example of a specialized dictionary isa
vector, where the key value is the integer index.

Asan element islooked up or inserted into the dictionary, the associated key is hashed.
Hashing converts the key into a numeric index value which is used to locate the value. The
storage area referenced by the hash valueis usually called abucket. If more than one key
results in the same hash, the values associated with the keys are placed in alist stored in the
bucket. The equality operator of the key’ s type is used to locate the key-value pairs.

In the description of each member function, the text Key is used to indicate the template
parameter defining the type of the indices pointed to by the pointers stored in the dictionary.
Thetext Val ue isused to indicate the template parameter defining the type of the data
pointed to by the pointers stored in the dictionary.

The constructor for the WCPt r HashDi ct <Key, Val ue> class reguires a hashing function,
which given areferenceto Key, returnsan unsi gned value. The returned value modulo
the number of buckets determines the bucket into which the key-value pair will be located.
The return values of the hash function can be spread over the entire range of unsigned
numbers. The hash function return value must be the same for values which are equivalent
by the equivalence operator for Key.

Note that pointers to the key values are stored in the dictionary. Destructors are not called on
the keys pointed to. The key values pointed to in the dictionary should not be changed such
that the equival ence to the old value is modified.

The WCEXcept classisabase class of the WCPt r HashDi ct <Key, Val ue> classand
providesthe except i ons member function. This member function controls the exceptions
which can be thrown by the WCPt r HashDi ct <Key, Val ue> object. No exceptionsare
enabled unless they are set by the except i ons member function.

Requirements of Key

The WCPt r HashDi ct <Key, Val ue> classrequires Key to have:

A well defined equivalence operator with constant parameters
(int operator ==(const Key &) const).

Public Member Functions

84 Hash Containers

WCPtrHashDict<Key,Value>

The following member functions are declared in the public interface:

WCPt r HashDi ct (unsi gned (*hash_fn)(const Key &), unsigned
WC_DEFAULT_HASH_SI ZE) ;

WCPt r HashDi ct (unsi gned (*hash_fn)(const Key &), unsigned =
WC_DEFAULT_HASH_SI ZE, void * (*user _alloc)(size_t size),
void (*user _dealloc)(void *old, size_t size));
WCPt r HashDi ct (const WCPtrHashDict &);

virtual ~WCPtrHashDi ct();

static unsigned bitHash(const void *, size_t);

unsi gned buckets() const;

void clear();

voi d cl ear AndDest roy();

int contains(const Key *) const;

unsi gned entries() const;

Value * find(const Key *) const;

Val ue * findKeyAndVal ue(const Key *, Key * &) const;

void forAll(void (*user fn)(Key *, Value *, void *) , void
*);

int insert(Key *, Value *);

int isEnpty() const;

Val ue * renove(const Key *);

voi d resize(unsigned);

Public Member Operators

The following member operators are declared in the public interface:

Value * & operator [](const Key &);

const Value * & operator [](const Key &) const;
WCPt r HashDi ct & operator =(const WCPtrHashDict &);
int operator ==(const WCPtrHashDict &) const;

Hash Containers 85

WCPtrHashDict<Key,Value>::WCPtrHashDict()

Synopsis. #i ncl ude <wchash. h>
public:
WCPt r HashDi ct (unsi gned (*hash_fn)(const Key &),
unsi gned = WC_DEFAULT_HASH_SI ZE);

Semantics. The public WCPt r HashDi ct <Key, Val ue> constructor creates an

WCPt r HashDi ct <Key, Val ue> object with no entries and with the number of bucketsin
the second optional parameter, which defaults to the constant WC_DEFAULT _HASH_SI ZE
(currently defined as 101). The number of buckets specified must be greater than zero, and
will be forced to at least one. If the hash dictionary object can be created, but an alocation
failure occurs when creating the buckets, the table will be created with zero buckets. If the
out _of _nenory exception is enabled, then attempting to insert into a hash table with zero
buckets with throw an out _of _menory error.

The hash function hash_f n is used to determine which bucket each key-value pair will be
assigned. If no hash function exists, the static member function bi t Hash isavailableto
help create one.

Results: The public WCPt r HashDi ct <Key, Val ue> constructor creates an initialized
WCPt r HashDi ct <Key, Val ue> object with the specified number of buckets and hash
function.

SeeAlso: ~WCPt r HashDi ct, bi t Hash, WCExcept : : out _of _nenory

86 Hash Containers

WCPtrHashDict<Key,Value>::WCPtrHashDict()

Synopsis. #i ncl ude <wchash. h>
public:
WCPt r HashDi ct (unsi gned (*hash_fn)(const Key &),
unsi gned = WC_DEFAULT_HASH_SI ZE,
void * (*user_alloc)(size_t),
void (*user _dealloc)(void *, size_t));

Semantics. Allocator and deallocator functions are specified for use when entries are inserted and
removed from the hash dictionary. The semantics of this constructor are the same as the
constructor without the memory management functions.

The allocation function must return azero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Y our allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of a hash dictionary. To
determine the size of the objects that the memory management functions will be required to
allocate and free, the following macro may be used:

WCPt r HashDi ct It entSi ze(Key, Val ue)

Results: The public WCPt r HashDi ct <Key, Val ue> constructor creates an initialized
WCPt r HashDi ct <Key, Val ue> object with the specified number of buckets and hash
function.

SeeAlso: ~WCPt r HashDi ct, bi t Hash, WCExcept : : out _of _nenory

Hash Containers 87

WCPtrHashDict<Key,Value>::WCPtrHashDict()

Synopsis. #i ncl ude <wchash. h>
public:
WCPt r HashDi ct (const WCPtrHashDict &);

Semantics: The public WCPt r HashDi ct <Key, Val ue> constructor is the copy constructor for the
WCPt r HashDi ct <Key, Val ue> class. The new dictionary is created with the same
number of buckets, hash function, all values or pointers stored in the dictionary, and the
exception trap states. 1f the hash dictionary object can be created, but an allocation failure
occurs When creating the buckets, the table will be created with zero buckets. If thereis not
enough memory to copy al of the valuesin the dictionary, then only some will be copied,
and the number of entries will correctly reflect the number copied. If al of the elements
cannot be copied, then the out _of _nenory exception isthrown if it is enabled.

Results: The public WCPt r HashDi ct <Key, Val ue> constructor creates an
WCPt r HashDi ct <Key, Val ue> object which is acopy of the passed dictionary.

SeeAlso: ~WCPt r HashDi ct, operat or =, WCExcept : : out _of nenory

88 Hash Containers

WCPtrHashDict<Key,Value>::~WCPtrHashDict()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>
public:
virtual ~WCPtrHashDi ct();

The public ~\WWCPt r HashDi ct <Key, Val ue> destructor is the destructor for the

WCPt r HashDi ct <Key, Val ue> class. If the number of dictionary elementsis not zero
and the not _enpt y exception is enabled, the exception isthrown. Otherwise, the
dictionary elements are cleared using the cl ear member function. The objects which the
dictionary elements point to are not deleted unlessthe cl ear AndDest r oy member
function is explicitly called before the destructor is called. The call to the public

~WCPt r HashDi ct <Key, Val ue> destructor isinserted implicitly by the compiler at the
point where the WCPt r HashDi ct <Key, Val ue> object goes out of scope.

The public ~WCPt r HashDi ct <Key, Val ue> destructor destroys an
WCPt r HashDi ct <Key, Val ue> object.

cl ear, cl ear AndDest r oy, WCEXcept : : not _enpty

Hash Containers 89

WCPtrHashDict<Key,Value>::bitHash()

Synopsis. #i ncl ude <wchash. h>
public:
static unsigned bitHash(void *, size_t);

Semantics: Thebi t Hash public member function can be used to implement a hashing function for any
type. A hashing value is generated from the value stored for the number of specified bytes
pointed to by the first parameter.

Results: The bi t Hash public member function returns an unsigned value which can be used as the
basis of auser defined hash function.

SeeAlso:. WCPtr HashDi ct

90 Hash Containers

WCPtrHashDict<Key,Value>::buckets()

Synopsis. #i ncl ude <wchash. h>
public:
unsi gned buckets const;

Semantics: Thebucket s public member function is used to find the number of buckets contained in
the WCPt r HashDi ct <Key, Val ue> object.

Results: The bucket s public member function returns the number of buckets in the dictionary.

See Also: resi ze

Hash Containers 91

WCPtrHashDict<Key,Value>::clear()

Synopsis. #i ncl ude <wchash. h>
public:
void clear();

Semantics: Thecl ear public member function is used to clear the dictionary so that it has no entries.
The number of buckets remain unaffected. Objects pointed to by the dictionary elements are
not deleted. The dictionary object is not destroyed and re-created by this function, so the
object destructor is not invoked.

Results: The cl ear public member function clears the dictionary to have no elements.

SeeAlso: ~WCPt r HashDi ct, cl ear AndDest r oy, operator =

92 Hash Containers

WCPtrHashDict<Key,Value>::clearAndDestroy()

Synopsis. #i ncl ude <wchash. h>
public:
voi d cl ear AndDest roy();

Semantics: Thecl ear AndDest r oy public member function is used to clear the dictionary and delete
the objects pointed to by the dictionary elements. The dictionary object is not destroyed and
re-created by this function, so the dictionary object destructor is not invoked.

Results: Thecl ear AndDest r oy public member function clears the dictionary by deleting the
objects pointed to by the dictionary elements.

See Also; cl ear

Hash Containers 93

WCPtrHashDict<Key,Value>::contains()

Synopsis. #i ncl ude <wchash. h>
public:
int contains(const Key *) const;

Semantics: Thecont ai ns public member function returns non-zero if an element with the specified
key is stored in the dictionary, or zero if there is no equivalent element. Note that
equivalenceis based on the equivalence operator of the Key type.

Results: The cont ai ns public member function returns a non-zero value if the Key isfound in the
dictionary.

SeeAlso: find,findKeyAndVal ue

94 Hash Containers

WCPtrHashDict<Key,Value>::entries()

Synopsis. #i ncl ude <wchash. h>
public:
unsi gned entries() const;

Semantics: Theent ri es public member function is used to return the current number of elements
stored in the dictionary.

Results: Theent ri es public member function returns the number of elementsin the dictionary.

SeeAlso: buckets,i sEnpty

Hash Containers 95

WCPtrHashDict<Key,Value>::find()

Synopsis. #i ncl ude <wchash. h>
public:
Val ue * find(const Key *) const;

Semantics: Thef i nd public member function is used to find an element with an equivalent key in the
dictionary. If an equivalent element isfound, a pointer to the element Val ue isreturned.
Zeroisreturned if the element is not found. Note that equivalence is based on the
equivalence operator of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

SeeAlso: findKeyAndVal ue

96 Hash Containers

WCPtrHashDict<Key,Value>::findKeyAndValue()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wchash. h>

public:

Val ue * findKeyAndVal ue(const Key *,
Key & Value &) const;

Thef i ndKeyAndVal ue public member function is used to find an element in the
dictionary with an key equivalent to the first parameter. If an equivalent element isfound, a
pointer to the element Val ue isreturned. The referenceto a Key passed as the second
parameter is assigned the found element’skey. Zeroisreturned if the element is not found.
Note that equivalence is based on the equivalence operator of the Key type.

The element equivalent to the passed key islocated in the dictionary.

fi ndkeyAndVal ue

Hash Containers 97

WCPtrHashDict<Key,Value>::forAll()

Synopsis. #i ncl ude <wchash. h>
public:
void forAll(
void (*user _fn)(Key *, Value *, void *),
void *);

Semantics: Thef or Al | public member function causes the user supplied function to be invoked for
every key-value pair in the dictionary. The user function has the prototype

voi d user func(Key * key, Value * value, void * data);

Asthe elements are visited, the user function isinvoked with the Key and Val ue
components of the element passed as the first two parameters. The second parameter of the
forAll functionis passed asthe third parameter to the user function. This value can be
used to pass any appropriate data from the main code to the user function.

Results: The elementsin the dictionary are al visited, with the user function being invoked for each
one.

SeeAlso: find,findKeyAndVal ue

98 Hash Containers

WCPtrHashDict<Key,Value>::insert()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>
public:
int insert(Key *, Value *);

Thei nsert public member function inserts a key and value into the dictionary, using the
hash function on the key to determine to which bucket it should be stored. If allocation of
the node to store the key-value pair fails, then the out _of _nenory exception isthrown if
itisenabled. If the exception is not enabled, the insert will not be completed.

At some point, the number of bucketsinitially selected may be too small for the number of
elementsinserted. The resize of the dictionary can be controlled by the insertion mechanism
by using WCPt r HashDi ct asabase class, and providing an insert member function to do a
resize when appropriate. Thisinsert could then call WCPt r HashDi ct : ;i nsert toinsert
the element. Note that copy constructors and assignment operators are not inherited in your
class, but you can provide the following inline definitions (assuming that the class inherited
from WCPtrHashDict is named MyHashDict):

inline MyHashDi ct (const MyHashDict &orig) : WCPtrHashDict(orig) {};
inline MyHashDi ct &operator=(const MyHashDict &orig) {

return(WCPtrHashDict::operator=(orig));
}

Thei nsert public member function inserts a key and value into the dictionary. If the
insert is successful, a non-zero will returned. A zero will be returned if the insert fails.

operat or =, WCExcept :: out _of _nmenory

Hash Containers 99

WCPtrHashDict<Key,Value>::isEmpty()

Synopsis. #i ncl ude <wchash. h>
public:
int iseEnpty() const;
Semantics: Thei sEnpt y public member function is used to determine if the dictionary is empty.

Results: Thei sEnpt y public member function returns zero if it contains at least one entry, non-zero
if the dictionary is empty.

See Also: buckets,entries

100 Hash Containers

WCPtrHashDict<Key,Value>::operator []()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>
public:
Val ue * & operator[](const Key &);

operat or [] isthedictionary index operator. A reference to the object stored in the
dictionary with the given Key isreturned. If no equivalent element isfound, then a new
key-value pair is created with the specified Key value, and initialized with the default
constructor. The returned reference can then be assigned to, so that insertions can be made
with the operator. If an alocation error occurs while inserting a new key-value pair, then the
out _of _nenory exceptionisthrown if it isenabled. If the exception is not enabled, then
areference to address zero will be returned. Thiswill result in arun-time error on systems
which trap address zero references.

Theoperat or [] public member function returns a reference to the element at the given
key value. If the key does not exist, areference to a created element is returned. The result
of the operator may be assigned to.

WCExcept : : out _of _nenory

Hash Containers 101

WCPtrHashDict<Key,Value>::operator []()

Synopsis. #i ncl ude <wchash. h>
public:
Val ue * const & operator[](const Key *) const;

Semantics: operat or [] isthedictionary index operator. A constant reference to the object stored in
the dictionary with the given Key isreturned. If no equivalent element isfound, then the
i ndex _r ange exception isthrown if it isenabled. If the exception isnot enabled, then a
reference to address zero will be returned. Thiswill result in arun-time error on systems
which trap address zero references.

Results: Theoperator [] public member function returns a constant reference to the element at
the given key value. The result of the operator may not be assigned to.

SeeAlso: WCExcept::index_range

102 Hash Containers

WCPtrHashDict<Key,Value>::operator =()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>
public:
WCPt r HashDi ct & operator =(const WCPtrHashDict &);

Theoper at or = public member function is the assignment operator for the

WCPt r HashDi ct <Key, Val ue> class. Theleft hand side dictionary isfirst cleared using
thecl ear member function, and then the right hand side dictionary is copied. The hash
function, exception trap states, and all of the dictionary elements are copied. If an allocation
failure occurs when creating the buckets, the table will be created with zero buckets, and the
out _of _nenory exceptionisthrown if it isenabled. If thereis not enough memory to
copy al of the values or pointers in the dictionary, then only some will be copied, and the
out _of _nenory exceptionisthrown if it isenabled. The number of entrieswill correctly
reflect the number copied.

Theoper at or = public member function assigns the left hand side dictionary to be a copy
of the right hand side.

cl ear, WCExcept : : out _of _nmenory

Hash Containers 103

WCPtrHashDict<Key,Value>::operator ==()

Synopsis. #i ncl ude <wchash. h>
public:
int operator ==(const WCPtrHashDict &) const;

Semantics: Theoper at or == public member function is the equivalence operator for the
WCPt r HashDi ct <Key, Val ue> class. Two dictionary objects are equivalent if they are
the same object and share the same address.

Results: A TRUE (non-zero) value isreturned if the left hand side and right hand side dictionary are
the same object. A FALSE (zero) valueis returned otherwise.

104 Hash Containers

WCPtrHashDict<Key,Value>::remove()

Synopsis:

Semantics:

Results:

#i ncl ude <wchash. h>
public:
Val ue * renove(const Key *);

Ther emove public member function is used to remove the specified el ement from the

dictionary. If an equivalent element isfound, the pointer valueisreturned. Zero is returned

if the element is not found. Note that equivalence is based on the equivalence operator of the
Key type.

The element is removed from the dictionary if it found.

Hash Containers 105

WCPtrHashDict<Key,Value>::resize()

Synopsis. #i ncl ude <wchash. h>
public:
voi d resize(unsigned);

Semantics: Ther esi ze public member function is used to change the number of buckets contained in
the dictionary. If the new number islarger than the previous dictionary size, then the hash
function will be used on all of the stored elements to determine which bucket they should be
stored into. Entries are not destroyed or created in the process of being moved. If thereis
not enough memory to resize the dictionary, the out _of _nenory exception isthrown if it
is enabled, and the dictionary will contain the number of buckets it contained before the
resize. If the new number iszero, thenthe zer o _bucket s exception isthrownif itis
enabled, and no resize will be performed. The dictionary is guaranteed to contain the same
number of entries after the resize.

Results: The dictionary isresized to the new number of buckets.

SeeAlso: WCExcept: :out of nenory, WCExcept: : zer o _bucket s

106 Hash Containers

WCPtrHashTable<Type>, WCPtrHashSet<Type>

Declared:

wchash. h

WCPt r HashTabl e<Type> and WCPt r HashSet <Type> classes are templated classes
used to store objectsin ahash. A hash saves objectsin such away asto make it efficient to
locate and retrieve an element. Asan element islooked up or inserted into the hash, the
value of the element is hashed. Hashing resultsin a numeric index which is used to locate
thevalue. The storage areareferenced by the hash valueis usually called abucket. If more
than one element results in the same hash, the value associated with the hashisplaced in a
list stored in the bucket. A hash table allows more than one copy of an element that is
equivalent, while the hash set allows only one copy. The equality operator of the element’s
typeis used to locate the value.

In the description of each member function, the text Ty pe is used to indicate the template
parameter defining the type of the data pointed to by the pointers stored in the hash.

The constructor for the WCPt r HashTabl e<Type> and WCPt r HashSet <Type> classes
requires a hashing function, which given areferenceto Type, returnsan unsi gned value.
The returned value modulo the number of buckets determines the bucket into which the
element will be located. The return values of the hash function can be spread over the entire
range of unsigned numbers. The hash function return value must be the same for values
which are equivalent by the equivalence operator for Type.

Note that pointers to the elements are stored in the hash. Destructors are not called on the
elements pointed to. The data values pointed to in the hash should not be changed such that
the equivalence to the old value is modified.

The WCEXxcept classisabase class of the WCPt r HashTabl e<Type> and

WCPt r HashSet <Type> classes and provides the except i ons member function. This
member function controls the exceptions which can be thrown by the

WCPt r HashTabl e<Type> and WCPt r HashSet <Type> objects. No exceptions are
enabled unless they are set by the except i ons member function.

Requirements of Type

The WCPt r HashTabl e<Type> and WCPt r HashSet <Type> classesrequires Type to
have:

A well defined equivalence operator with constant parameters
(int operator ==(const Type &) const).

Public Member Functions

The following member functions are declared in the public interface:

Hash Containers 107

WCPtrHashTable<Type>, WCPtrHashSet<Type>

WCPt r HashSet (unsi gned (*hash_fn)(const Type &), unsigned
WC_DEFAULT_HASH_SI ZE) ;

WCPt r HashSet (unsi gned (*hash_fn)(const Type &), unsigned
WC_DEFAULT_HASH_SI ZE, void * (*user _alloc)(size_t size),
void (*user _dealloc)(void *old, size_t size));
WCPt r HashSet (const WCPtrHashSet &);

virtual ~WCPtrHashSet ();

WCPt r HashTabl e(unsi gned (*hash _fn)(const Type &), unsigned
= WC_DEFAULT_HASH_SI ZE) ;

WCPt r HashTabl e(unsi gned (*hash_fn)(const Type &), unsigned
= WC_DEFAULT_HASH_SI ZE, void * (*user_alloc)(size_t size),
void (*user _dealloc)(void *old, size_t size));

WCPt r HashTabl e(const WCPtrHashTable &);

virtual ~WCPtrHashTabl e();

static unsigned bitHash(const void *, size_t);

unsi gned buckets() const;

void clear();

voi d cl ear AndDest roy();

int contains(const Type *) const;

unsi gned entries() const;

Type * find(const Type *) const;

void forAll(void (*user_fn)(Type *, void *) , void *);

int insert(Type *);

int isEnpty() const;

Type * renove(const Type *);

voi d resize(unsigned);

The following public member functions are available for the WCPt r HashTabl e class only:

unsi gned occurrencesOf(const Type *) const;
unsi gned renoveAl | (const Type *);

Public Member Operators
The following member operators are declared in the public interface:

WCPt r HashSet & operator =(const WCPtrHashSet &);

i nt operator ==(const WCPtrHashSet &) const;
WCPt r HashTabl e & operator =(const WCPtrHashTable &);
i nt operator ==(const WCPtrHashTable &) const;

108 Hash Containers

WCPtrHashSet<Type>::WCPtrHashSet()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>

public:

WCPt r HashSet (unsi gned (*hash_fn)(const Type &),
unsi gned = WC_DEFAULT_HASH_SI ZE);

The WCPt r HashSet <Type> constructor createsa WCPt r HashSet object with no entries
and with the number of buckets in the second optional parameter, which defaults to the
constant WC_DEFAULT _HASH_SI ZE (currently defined as 101). The number of buckets
specified must be greater than zero, and will be forced to at least one. If the hash object can
be created, but an allocation failure occurs when creating the buckets, the table will be
created with zero buckets. If the out _of _nenory exception is enabled, then attempting to
insert into a hash table with zero buckets with throw an out _of _nmenory error.

The hash function hash_f n is used to determine which bucket each value will be assigned
to. If no hash function exists, the static member function bi t Hash isavailable to help
create one.

The WCPt r HashSet <Type> constructor creates an initialized WCPt r HashSet object
with the specified number of buckets and hash function.

~WCPt r HashSet , bi t Hash, WCExcept : : out _of _nenory

Hash Containers 109

WCPtrHashSet<Type>::WCPtrHashSet()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>

public:

WCPt r HashSet (unsi gned (*hash_fn)(const Type &),
unsi gned = WC_DEFAULT_HASH_SI ZE,

void * (*user_alloc)(size_t),

void (*user _dealloc)(void *, size_t));

Allocator and deallocator functions are specified for use when entries are inserted and
removed from the hash. The semantics of this constructor are the same as the constructor
without the memory management functions.

The allocation function must return azero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Y our allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of ahash. To determine the
size of the objects that the memory management functions will be required to alocate and
free, the following macro may be used:

WCPt r HashSet | t enSi ze(Type)

The WCPt r HashSet <Type> constructor creates an initialized WCPt r HashSet object
with the specified number of buckets and hash function.

~WCPt r HashSet , bi t Hash, WCExcept : : out _of _nmenory

110 Hash Containers

WCPtrHashSet<Type>::WCPtrHashSet()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>
public:
WCPt r HashSet (const WCPtrHashSet &);

The WCPt r HashSet <Type> isthe copy constructor for the WCPt r HashSet class. The
new hash is created with the same number of buckets, hash function, all values or pointers
stored in the hash, and the exception trap states. If the hash object can be created, but an
allocation failure occurs when creating the buckets, the hash will be created with zero
buckets. If there is not enough memory to copy al of the values, then only some will be
copied, and the number of entries will correctly reflect the number copied. If all of the
elements cannot be copied, then the out _of _nmenor y exception isthrown if it is enabled.

The WCPt r HashSet <Type> constructor createsa WCPt r HashSet object whichisa
copy of the passed hash.

~WCPt r HashSet , oper at or =, WCExcept : : out _of _nmenory

Hash Containers 111

WCPtrHashSet<Type>::~WCPtrHashSet()

Synopsis. #i ncl ude <wchash. h>
public:
virtual ~WCPtrHashSet ();

Semantics. The WCPt r HashSet <Type> destructor is the destructor for the WCPt r HashSet class.
If the number of elementsis not zero and the not _enpt y exception is enabled, the
exception isthrown. Otherwise, the hash elements are cleared using the cl ear member
function. The objects which the hash e ements point to are not deleted unlessthe
cl ear AndDest r oy member function is explicitly called before the destructor is called.
The call to the WCPt r HashSet <Type> destructor is inserted implicitly by the compiler at
the point where the WCPt r HashSet object goes out of scope.

Results: The call to the WCPt r HashSet <Type> destructor destroys a WCPt r HashSet object.

SeeAlso: cl ear, cl ear AndDest r oy, WCEXcept : : not _enpty

112 Hash Containers

WCPtrHashTable<Type>::WCPtrHashTable()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>

public:

WCPt r HashTabl e(unsi gned (*hash_fn)(const Type &),
unsi gned = WC_DEFAULT_HASH_SI ZE);

The WCPt r HashTabl e<Type> constructor createsa WCPt r HashTabl e object with no
entries and with the number of buckets in the second optional parameter, which defaults to
the constant WC_DEFAULT _HASH_SI ZE (currently defined as 101). The number of
buckets specified must be greater than zero, and will be forced to at least one. If the hash
object can be created, but an allocation failure occurs when creating the buckets, the table
will be created with zero buckets. If the out _of _nmenor y exception is enabled, then
attempting to insert into a hash table with zero buckets with throw an out _of _nenory
error.

The hash function hash_f n is used to determine which bucket each value will be assigned
to. If no hash function exists, the static member function bi t Hash isavailable to help
create one.

The WCPt r HashTabl e<Type> constructor creates an initialized WCPt r HashTabl e
object with the specified number of buckets and hash function.

~WCPt r HashTabl e, bi t Hash, WCExcept : : out _of _nmenory

Hash Containers 113

WCPtrHashTable<Type>::WCPtrHashTable()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>

public:

WCPt r HashTabl e(unsi gned (*hash_fn)(const Type &),
unsi gned = WC_DEFAULT_HASH_SI ZE,

void * (*user_alloc)(size_t),

void (*user _dealloc)(void *, size_t));

Allocator and deallocator functions are specified for use when entries are inserted and
removed from the hash. The semantics of this constructor are the same as the constructor
without the memory management functions.

The allocation function must return azero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Y our allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of ahash. To determine the
size of the objects that the memory management functions will be required to alocate and
free, the following macro may be used:

WCPt r HashTabl el t eni ze(Type)

The WCPt r HashTabl e<Type> constructor creates an initialized WCPt r HashTabl e
object with the specified number of buckets and hash function.

~WCPt r HashTabl e, bi t Hash, WCExcept : : out _of _nenory

114 Hash Containers

WCPtrHashTable<Type>::WCPtrHashTable()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>
public:
WCPt r HashTabl e(const WCPtrHashTable &);

The WCPt r HashTabl e<Type> isthe copy constructor for the WCPt r HashTabl e class.
The new hash is created with the same number of buckets, hash function, all values or
pointers stored in the hash, and the exception trap states. If the hash object can be created,
but an allocation failure occurs when creating the buckets, the hash will be created with zero
buckets. If there is not enough memory to copy al of the values, then only some will be
copied, and the number of entries will correctly reflect the number copied. If all of the
elements cannot be copied, then the out _of _nmenor y exception isthrown if it is enabled.

The WCPt r HashTabl e<Type> constructor createsa WCPt r HashTabl e object whichis
acopy of the passed hash.

~WCPt r HashTabl e, oper at or =, WCExcept : : out _of _nmenory

Hash Containers 115

WCPtrHashTable<Type>::~WCPtrHashTable()

Synopsis. #i ncl ude <wchash. h>
public:
virtual ~WCPtrHashTabl e();

Semantics: The WCPt r HashTabl e<Type> destructor is the destructor for the WCPt r HashTabl e
class. If the number of elementsis not zero and the not _enpt y exception is enabled, the
exception isthrown. Otherwise, the hash elements are cleared using the cl ear member
function. The objects which the hash e ements point to are not deleted unlessthe
cl ear AndDest r oy member function is explicitly called before the destructor is called.
The call to the WCPt r HashTabl e<Type> destructor isinserted implicitly by the compiler
at the point where the WCPt r HashTabl e object goes out of scope.

Results: The call tothe WCPt r HashTabl e<Type> destructor destroys a WCPt r HashTabl e
object.

SeeAlso: cl ear, cl ear AndDest r oy, WCEXcept : : not _enpty

116 Hash Containers

WCPtrHashTable<Type>::bitHash(), WCPtrHashSet<Type>::bitHash()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wchash. h>
public:
static unsigned bitHash(void *, size_t);

The bi t Hash public member function can be used to implement a hashing function for any
type. A hashing value is generated from the value stored for the number of specified bytes
pointed to by the first parameter.

The bi t Hash public member function returns an unsigned value which can be used as the
basis of auser defined hash function.

WCPt r HashSet , WCPt r HashTabl e

Hash Containers 117

WCPtrHashTable<Type>::buckets(), WCPtrHashSet<Type>::buckets()

Synopsis. #i ncl ude <wchash. h>
public:
unsi gned buckets() const;

Semantics: Thebucket s public member function is used to find the number of buckets contained in
the hash object.

Results: Thebucket s public member function returns the number of bucketsin the hash.

See Also: resi ze

118 Hash Containers

WCPtrHashTable<Type>::clear(), WCPtrHashSet<Type>::clear()

Synopsis. #i ncl ude <wchash. h>
public:
void clear();

Semantics: Thecl ear public member function is used to clear the hash so that it has no entries. The
number of buckets remain unaffected. Objects pointed to by the hash elements are not
deleted. The hash object is not destroyed and re-created by this function, so the object
destructor is not invoked.

Results: The cl ear public member function clears the hash to have no elements.

SeeAlso: ~WCPt r HashSet , ~\WCPt r HashTabl e, cl ear AndDest r oy, operator =

Hash Containers 119

WCPtrHashTable<Type>,WCPtrHashSet<Type>::clearAndDestroy()

Synopsis. #i ncl ude <wchash. h>
public:
voi d cl ear AndDest roy();

Semantics: Thecl ear AndDest r oy public member function is used to clear the hash and delete the
objects pointed to by the hash elements. The hash object is not destroyed and re-created by
this function, so the hash object destructor is not invoked.

Results: Thecl ear AndDest r oy public member function clears the hash by deleting the objects
pointed to by the hash elements.

See Also; cl ear

120 Hash Containers

WCPtrHashTable<Type>::contains(), WCPtrHashSet<Type>::contains()

Synopsis. #i ncl ude <wchash. h>
public:
int contains(const Type *) const;

Semantics: Thecont ai ns public member function returns non-zero if the element is stored in the
hash, or zero if there is no equivalent element. Note that equivalence is based on the
equivalence operator of the element type.

Results: The cont ai ns public member function returns a non-zero value if the element isfound in
the hash.

SeeAlso: find

Hash Containers 121

WCPtrHashTable<Type>::entries(), WCPtrHashSet<Type>::entries()

Synopsis. #i ncl ude <wchash. h>
public:
unsi gned entries() const;

Semantics: Theent ri es public member function is used to return the current number of elements
stored in the hash.

Results: Theent ri es public member function returns the number of elementsin the hash.

SeeAlso: buckets,i sEnpty

122 Hash Containers

WCPtrHashTable<Type>::find(), WCPtrHashSet<Type>::find()

Synopsis. #i ncl ude <wchash. h>
public:
Type * find(const Type *) const;

Semantics: Thef i nd public member function is used to find an element with an equivalent key in the

hash. If an equivalent element isfound, a pointer to the element isreturned. Zero isreturned

if the element is not found. Note that equivalence is based on the equivalence operator of the
element type.

Results: The element equivalent to the passed key is located in the hash.

Hash Containers 123

WCPtrHashTable<Type>::forAll(), WCPtrHashSet<Type>::forAll()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>

public:

void forAll(

void (*user _fn)(Type *, void *),
void *);

Thef or Al | public member function causes the user supplied function to be invoked for
every value in the hash. The user function has the prototype

voi d user func(Type * value, void * data);

Asthe elements are visited, the user function isinvoked with the element passed as the first.
The second parameter of the f or Al | function is passed as the second parameter to the user
function. Thisvalue can be used to pass any appropriate data from the main code to the user
function.

The elementsin the hash are al visited, with the user function being invoked for each one.

find

124 Hash Containers

WCPtrHashTable<Type>::insert(), WCPtrHashSet<Type>::insert()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>
public:
int insert(Type *);

Thei nsert public member function inserts a value into the hash, using the hash function to
determine to which bucket it should be stored. If allocation of the node to store the value
fails, then the out _of _nenory exceptionisthrown if it isenabled. If the exception is not
enabled, the insert will not be completed.

WithaWCPt r HashSet , there must be only one equivalent element in the set. If an
element equivalent to the inserted element is already in the hash set, the hash set will remain
unchanged, and the not _uni que exception isthrownif it isenabled. If the exceptionis
not enabled, the insert will not be compl eted.

At some point, the number of bucketsinitially selected may be too small for the number of
elementsinserted. The resize of the hash can be controlled by the insertion mechanism by
using WCPt r HashSet (or WCPt r HashTabl e) asabase class, and providing an insert
member function to do a resize when appropriate. Thisinsert could then call

WCPt r HashSet : ;i nsert (or WCPt r HashTabl e: : i nsert) toinsert the element.
Note that copy constructors and assignment operators are not inherited in your class, but you
can provide the following inline definitions (assuming that the class inherited from
WCPtrHashTable is named MyHashTable):

inline MyHashTabl e(const MyHashTabl e &orig)
: WCPtrHashTable(orig) {};

inline MyHashTabl e &operator=(const MyHashTable &orig) {
return(WCPtrHashTabl e: : operator=(orig));

}

Thei nsert public member function inserts avalue into the hash. If theinsert is
successful, a non-zero will returned. A zero will be returned if the insert fails.

operat or =, WCExcept :: out _of _nmenory

Hash Containers 125

WCPtrHashTable<Type>::isEmpty(), WCPtrHashSet<Type>::isEmpty()

Synopsis. #i ncl ude <wchash. h>
public:
int iseEnpty() const;
Semantics: Thei sEnpt y public member function is used to determine if the hash is empty.

Results: Thei sEnpt y public member function returns zero if it contains at least one entry, non-zero
if the hash is empty.

See Also: buckets,entries

126 Hash Containers

WCPtrHashTable<Type>::occurencesOf()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>

public:

unsi gned occurrencesOf(const Type *) const;

Theoccur encesOF public member function is used to return the current number of
elements stored in the hash which are equivalent to the passed value. Note that equivalence
is based on the equivalence operator of the element type.

Theoccur encesOf public member function returns the number of elementsin the hash.

buckets,entries,find,isEnpty

Hash Containers 127

WCPtrHashTable<Type>::operator =(), WCPtrHashSet<Type>::operator =()

Synopsis. #i ncl ude <wchash. h>
public:
WCPt r HashSet & operator =(const WCPtrHashSet &);
WCPt r HashTabl e & operator =(const WCPtrHashTable &);

Semantics: Theoper at or = public member function is the assignment operator for the
WCPt r HashTabl e<Type> and WCPt r HashSet <Type> classes. Theleft hand side
hash isfirst cleared using the cl ear member function, and then the right hand side hash is
copied. The hash function, exception trap states, and all of the hash elements are copied. If
an alocation failure occurs when creating the buckets, the table will be created with zero
buckets, and the out _of _nenory exceptionisthrown if it isenabled. If thereisnot
enough memory to copy al of the values or pointers in the hash, then only some will be
copied, and the out _of _nenory exceptionisthrown if it isenabled. The number of
entries will correctly reflect the number copied.

Results: Theoper at or = public member function assigns the left hand side hash to be a copy of
the right hand side.

SeeAlso: cl ear, WCExcept : : out _of _menory

128 Hash Containers

WCPtrHashTable<Type>::operator ==(), WCPtrHashSet<Type>::operator ==()

Synopsis. #i ncl ude <wchash. h>
public:
i nt operator ==(const WCPtrHashSet &) const;
i nt operator ==(const WCPtrHashTable &) const;

Semantics: Theoper at or == public member function is the equivalence operator for the
WCPt r HashTabl e<Type> and WCPt r HashSet <Type> classes. Two hash objects are
equivalent if they are the same object and share the same address.

Results: A TRUE (non-zero) value isreturned if the left hand side and right hand side hash are the
same object. A FALSE (zero) valueisreturned otherwise.

Hash Containers 129

WCPtrHashTable<Type>::remove(), WCPtrHashSet<Type>::remove()

Synopsis. #i ncl ude <wchash. h>
public:
Type * renove(const Type *);

Semantics: Ther enpve public member function is used to remove the specified element from the hash.
If an equivalent element isfound, the pointer valueis returned. Zero isreturned if the
element is not found. If the hash is atable and there is more than one element equivalent to
the specified element, then the first equivalent element added to the table isremoved. Note
that equivalence is based on the equivalence operator of the element type.

Results: The element is removed from the hash if it found.

130 Hash Containers

WCPtrHashTable<Type>::removeAll()

Synopsis:

Semantics:

Results:

#i ncl ude <wchash. h>
public:
unsi gned renoveAl | (const Type *);

Ther emoveAl | public member function is used to remove all elements equivalent to the
specified element from the hash. Zero isreturned if no equivalent elements are found. Note
that equivalence is based on the equivalence operator of the element type.

All equivalent elements are removed from the hash.

Hash Containers 131

WCPtrHashTable<Type>::resize(), WCPtrHashSet<Type>::resize()

Synopsis. #i ncl ude <wchash. h>
public:
voi d resize(unsigned);

Semantics: Ther esi ze public member function is used to change the number of buckets contained in
the hash. If the new number islarger than the previous hash size, then the hash function will
be used on all of the stored elements to determine which bucket they should be stored into.
Entries are not destroyed or created in the process of being moved. If thereis not enough
memory to resize the hash, the out _of _nmenory exception isthrown if it is enabled, and
the hash will contain the number of bucketsit contained before theresize. If the new number
iszero, thenthe zer o_bucket s exceptionisthrown if it is enabled, and no resize will be
performed. The hash is guaranteed to contain the same number of entries after the resize.

Results: The hash is resized to the new number of buckets.

SeeAlso: WCExcept: :out of nenory, WCExcept : : zer o_bucket s

132 Hash Containers

WCValHashDict<Key,Value>

Declared:

wchash. h

TheWCVal HashDi ct <Key, Val ue> classis atemplated class used to store objectsin a
dictionary. Dictionaries store values with an associated key, which may be of any type. One
example of adictionary used in everyday life is the phone book. The phone numbers are the
data values, and the customer name isthe key. An example of a specialized dictionary isa
vector, where the key value is the integer index.

Asan element islooked up or inserted into the dictionary, the associated key is hashed.
Hashing converts the key into a numeric index value which is used to locate the value. The
storage area referenced by the hash valueis usually called abucket. If more than one key
results in the same hash, the values associated with the keys are placed in alist stored in the
bucket. The equality operator of the key’ s type is used to locate the key-value pairs.

In the description of each member function, the text Key is used to indicate the template
parameter defining the type of the indices used to store datain the dictionary. The text

Val ue isused to indicate the template parameter defining the type of the data stored in the
dictionary.

The constructor for the WCVal HashDi ct <Key, Val ue> class requires a hashing function,
which given areferenceto Key, returnsan unsi gned value. The returned value modulo
the number of buckets determines the bucket into which the key-value pair will be located.
The return values of the hash function can be spread over the entire range of unsigned
numbers. The hash function return value must be the same for values which are equivalent
by the equivalence operator for Key.

Values are copied into the dictionary, which could be undesirable if the stored objects are
complicated and copying is expensive. Vaue dictionaries should not be used to store objects
of abase classif any derived types of different sizes would be stored in the dictionary, or if
the destructor for aderived class must be called.

The WCEXcept classisabase class of the WCVal HashDi ct <Key, Val ue> classand
providesthe except i ons member function. This member function controls the exceptions
which can be thrown by the WCVal HashDi ct <Key, Val ue> object. No exceptionsare
enabled unless they are set by the except i ons member function.

Requirements of Key and Value

TheWCVal HashDi ct <Key, Val ue> classrequires Key to have:

A default constructor (Key: : Key()).

A well defined copy constructor (Key: : Key(const Key &)).

Hash Containers 133

WCValHashDict<Key,Value>

A well defined assignment operator (Key & operator =(const Key &)).

A well defined equivalence operator with constant parameters
(int operator ==(const Key &) const).

The WCVal HashDi ct <Key, Val ue> classrequires Val ue to have:

A default constructor (Val ue: : Val ue()).

A well defined copy constructor (Val ue: : Val ue(const Value &)).

A well defined assignment operator (Val ue & operator =(const Value &)).
Public Member Functions

The following member functions are declared in the public interface:

WCVal HashDi ct (unsi gned (*hash_fn)(const Key &), unsigned =
WC_DEFAULT_HASH_SI ZE) ;

WCVal HashDi ct (unsi gned (*hash_fn)(const Key &), unsigned =
WC_DEFAULT_HASH_SI ZE, void * (*user _alloc)(size_t size),
void (*user _dealloc)(void *old, size t size));

WCVal HashDi ct (const WCVal HashDict &);

vi rtual ~WCval HashDi ct () ;

static unsigned bitHash(const void *, size_t);

unsi gned buckets() const;

void clear();

int contains(const Key &) const;

unsi gned entries() const;

int find(const Key & Value &) const;

i nt findKeyAndVal ue(const Key & Key & Value &) const;
void forAll(void (*user fn)(Key, Value, void *), void *);
int insert(const Key & const Value &);

int isEnpty() const;

int renove(const Key &);

voi d resize(unsigned);

Public Member Operators
The following member operators are declared in the public interface:

Val ue & operator [](const Key &);

const Value & operator [](const Key &) const;
WCVal HashDi ct & operator =(const WCVal HashDict &);
i nt operator ==(const WCVal HashDict &) const;

134 Hash Containers

WCValHashDict<Key,Value>::WCValHashDict()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>

public:

WCVal HashDi ct (unsi gned (*hash_fn)(const Key &),
unsi gned = WC_DEFAULT_HASH_SI ZE);

The public WCVal HashDi ct <Key, Val ue> constructor creates an

WCVal HashDi ct <Key, Val ue> object with no entries and with the number of bucketsin
the second optional parameter, which defaults to the constant WC_DEFAULT _HASH_SI ZE
(currently defined as 101). The number of buckets specified must be greater than zero, and
will be forced to at least one. If the hash dictionary object can be created, but an alocation
failure occurs when creating the buckets, the table will be created with zero buckets. If the
out _of _nenory exception is enabled, then attempting to insert into a hash table with zero
buckets with throw an out _of _menory error.

The hash function hash_f n is used to determine which bucket each key-value pair will be
assigned. If no hash function exists, the static member function bi t Hash isavailableto
help create one.

The public WCVal HashDi ct <Key, Val ue> constructor creates an initialized

WCVal HashDi ct <Key, Val ue> object with the specified number of buckets and hash
function.

~WCVal HashDi ct, bi t Hash, WCExcept : : out _of _nmenory

Hash Containers 135

WCValHashDict<Key,Value>::WCValHashDict()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>

public:

WCVal HashDi ct (unsi gned (*hash_fn)(const Key &),
unsi gned = WC_DEFAULT_HASH_SI ZE,

void * (*user_alloc)(size_t),

void (*user _dealloc)(void *, size_t));

Allocator and deallocator functions are specified for use when entries are inserted and
removed from the hash dictionary. The semantics of this constructor are the same as the
constructor without the memory management functions.

The allocation function must return azero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Y our allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of a hash dictionary. To
determine the size of the objects that the memory management functions will be required to
allocate and free, the following macro may be used:

WCVal HashDi ctltentSi ze(Key, Val ue)

The public WCVal HashDi ct <Key, Val ue> constructor creates an initialized
WCVal HashDi ct <Key, Val ue> object with the specified number of buckets and hash
function.

~WCVal HashDi ct, bi t Hash, WCExcept : : out _of _nmenory

136 Hash Containers

WCValHashDict<Key,Value>::WCValHashDict()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>
public:
WCVal HashDi ct (const WCVal HashDict &);

The public WCVal HashDi ct <Key, Val ue> constructor is the copy constructor for the
WCVal HashDi ct <Key, Val ue> class. The new dictionary is created with the same
number of buckets, hash function, all values or pointers stored in the dictionary, and the
exception trap states. 1f the hash dictionary object can be created, but an allocation failure
occurs When creating the buckets, the table will be created with zero buckets. If thereis not
enough memory to copy al of the valuesin the dictionary, then only some will be copied,
and the number of entries will correctly reflect the number copied. If al of the elements
cannot be copied, then the out _of _nenory exception isthrown if it is enabled.

The public WCVal HashDi ct <Key, Val ue> constructor creates an
WCVal HashDi ct <Key, Val ue> object which isacopy of the passed dictionary.

~WCVal HashDi ct, oper at or =, WCExcept : : out _of _nenory

Hash Containers 137

WCValHashDict<Key,Value>::~WCValHashDict()

Synopsis. #i ncl ude <wchash. h>
public:
virtual ~WCVal HashbDi ct ();

Semantics: The public ~WCVal HashDi ct <Key, Val ue> destructor is the destructor for the
WCVal HashDi ct <Key, Val ue> class. If the number of dictionary elementsis not zero
and the not _enpt y exception is enabled, the exception isthrown. Otherwise, the
dictionary elements are cleared using the cl ear member function. The call to the public
~WCVal HashDi ct <Key, Val ue> destructor isinserted implicitly by the compiler at the
point where the WCVal HashDi ct <Key, Val ue> object goes out of scope.

Results: The public ~WCVal HashDi ct <Key, Val ue> destructor destroys an
WCVal HashDi ct <Key, Val ue> object.

SeeAlso: cl ear, WCExcept : : not _enpty

138 Hash Containers

WCValHashDict<Key,Value>::bitHash()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>
public:
static unsigned bitHash(void *, size_t);

The bi t Hash public member function can be used to implement a hashing function for any
type. A hashing value is generated from the value stored for the number of specified bytes
pointed to by the first parameter. For example:

unsi gned nmy_hash_fn(const int & key) {
return(WCVal HashDi ct<int, String>::bitHash(&key, sizeof(int));

}
WCVal HashDi ct <i nt, Stri ng> data_object(&y _hash fn);

The bi t Hash public member function returns an unsigned value which can be used asthe
basis of auser defined hash function.

WCVal HashDi ct

Hash Containers 139

WCValHashDict<Key,Value>::buckets()

Synopsis. #i ncl ude <wchash. h>
public:
unsi gned buckets const;

Semantics: Thebucket s public member function is used to find the number of buckets contained in
the WCVal HashDi ct <Key, Val ue> object.

Results: The bucket s public member function returns the number of buckets in the dictionary.

See Also: resi ze

140 Hash Containers

WCValHashDict<Key,Value>::clear()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wchash. h>
public:
void clear();

Thecl ear public member function isused to clear the dictionary so that it has no entries.
The number of buckets remain unaffected. Elements stored in the dictionary are destroyed
using the destructors of Key and of Val ue. Thedictionary object is not destroyed and
re-created by this function, so the object destructor is not invoked.

Thecl ear public member function clears the dictionary to have no elements.

~WCVal HashDi ct, operator =

Hash Containers 141

WCValHashDict<Key,Value>::contains()

Synopsis. #i ncl ude <wchash. h>
public:
int contains(const Key &) const;

Semantics: Thecont ai ns public member function returns non-zero if an element with the specified
key is stored in the dictionary, or zero if there is no equivalent element. Note that
equivalenceis based on the equivalence operator of the Key type.

Results: The cont ai ns public member function returns a non-zero value if the Key isfound in the
dictionary.

SeeAlso: find,findKeyAndVal ue

142 Hash Containers

WCValHashDict<Key,Value>::entries()

Synopsis. #i ncl ude <wchash. h>
public:
unsi gned entries() const;

Semantics: Theent ri es public member function is used to return the current number of elements
stored in the dictionary.

Results: Theent ri es public member function returns the number of elementsin the dictionary.

SeeAlso: buckets,i sEnpty

Hash Containers 143

WCValHashDict<Key,Value>::find()

Synopsis. #i ncl ude <wchash. h>
public:
int find(const Key & Value &) const;

Semantics: Thef i nd public member function is used to find an element with an equivalent key in the
dictionary. If an equivalent element isfound, a non-zero valueisreturned. The reference to
aVal ue passed as the second argument is assigned the found element’s Val ue. Zerois
returned if the element is not found. Note that equivalence is based on the equivalence
operator of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

SeeAlso: findKeyAndVal ue

144 Hash Containers

WCValHashDict<Key,Value>::findKeyAndValue()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wchash. h>
public:
i nt findKeyAndVal ue(const Key & Key & Value &) const;

Thef i ndKeyAndVal ue public member function is used to find an element in the
dictionary with an key equivalent to the first parameter. 1f an equivalent element isfound, a
non-zero value isreturned. The referenceto a Key passed as the second parameter is
assigned the found element’ skey. Thereferenceto a Val ue passed asthe third argument is
assigned the found element’s Val ue. Zeroisreturned if the element is not found. Note
that equivalence is based on the equivalence operator of the Key type.

The element equivalent to the passed key is located in the dictionary.

fi ndkeyAndVal ue

Hash Containers 145

WCValHashDict<Key,Value>::forAll()

Synopsis. #i ncl ude <wchash. h>
public:
void forAll(
void (*user _fn)(Key, Value, void *),
void *);

Semantics: Thef or Al | public member function causes the user supplied function to be invoked for
every key-value pair in the dictionary. The user function has the prototype

voi d user func(Key key, Value value, void * data);

Asthe elements are visited, the user function isinvoked with the Key and Val ue
components of the element passed as the first two parameters. The second parameter of the
forAll functionis passed asthe third parameter to the user function. This value can be
used to pass any appropriate data from the main code to the user function.

Results: The elementsin the dictionary are al visited, with the user function being invoked for each
one.

SeeAlso: find,findKeyAndVal ue

146 Hash Containers

WCValHashDict<Key,Value>::insert()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>
public:
int insert(const Key & const Value &);

Thei nsert public member function inserts a key and value into the dictionary, using the
hash function on the key to determine to which bucket it should be stored. If allocation of
the node to store the key-value pair fails, then the out _of _nenory exception isthrown if
itisenabled. If the exception is not enabled, the insert will not be completed.

At some point, the number of bucketsinitially selected may be too small for the number of
elementsinserted. The resize of the dictionary can be controlled by the insertion mechanism
by using WCVal HashDi ct asabase class, and providing an insert member function to do a
resize when appropriate. Thisinsert could then call WCVal HashDi ct: ;i nsert toinsert
the element. Note that copy constructors and assignment operators are not inherited in your
class, but you can provide the following inline definitions (assuming that the class inherited
from WCVaHashDict is named MyHashDict):

inline MyHashDi ct (const MyHashDict &orig) : WCVal HashDict(orig) {};
inline MyHashDi ct &operator=(const MyHashDict &orig) {

return(WCVal HashDi ct: :operator=(orig));
}

Thei nsert public member function inserts a key and value into the dictionary. If the
insert is successful, a non-zero will returned. A zero will be returned if the insert fails.

operat or =, WCExcept :: out _of _nmenory

Hash Containers 147

WCValHashDict<Key,Value>::isEmpty()

Synopsis. #i ncl ude <wchash. h>
public:
int iseEnpty() const;
Semantics: Thei sEnpt y public member function is used to determine if the dictionary is empty.

Results: Thei sEnpt y public member function returns zero if it contains at least one entry, non-zero
if the dictionary is empty.

See Also: buckets,entries

148 Hash Containers

WCValHashDict<Key,Value>::operator []()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>
public:
Val ue & operator[](const Key &);

operat or [] isthedictionary index operator. A reference to the object stored in the
dictionary with the given Key isreturned. If no equivalent element isfound, then a new
key-value pair is created with the specified Key value, and initialized with the default
constructor. The returned reference can then be assigned to, so that insertions can be made
with the operator.

WCVal HashDi ct<i nt, Stri ng> data_object(&y_hash_fn);
data object[5] = "Hello";

If an allocation error occurs while inserting a new key-value pair, then the

out _of _nmenory exceptionisthrown if it isenabled. If the exception isnot enabled, then
areference to address zero will be returned. Thiswill result in arun-time error on systems
which trap address zero references.

Theoperat or [] public member function returns a reference to the element at the given
key value. If the key does not exist, areference to a created element isreturned. The result
of the operator may be assigned to.

WCExcept : : out _of _nmenory

Hash Containers 149

WCValHashDict<Key,Value>::operator []()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wchash. h>
public:
const Value & operator[](const Key &) const;

operat or [] isthedictionary index operator. A constant reference to the object stored in
the dictionary with the given Key isreturned. If no equivalent element isfound, then the

i ndex _r ange exception isthrown if it isenabled. If the exception isnot enabled, then a
reference to address zero will be returned. Thiswill result in arun-time error on systems
which trap address zero references.

Theoperator [] public member function returns a constant reference to the element at
the given key value. The result of the operator may not be assigned to.

WCEXxcept : : i ndex_r ange

150 Hash Containers

WCValHashDict<Key,Value>::operator =()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>
public:
WCVal HashDi ct & operator =(const WCVal HashDict &);

Theoper at or = public member function is the assignment operator for the

WCVal HashDi ct <Key, Val ue> class. Theleft hand side dictionary isfirst cleared using
thecl ear member function, and then the right hand side dictionary is copied. The hash
function, exception trap states, and all of the dictionary elements are copied. If an allocation
failure occurs when creating the buckets, the table will be created with zero buckets, and the
out _of _nenory exceptionisthrown if it isenabled. If thereis not enough memory to
copy al of the values or pointers in the dictionary, then only some will be copied, and the
out _of _nenory exceptionisthrown if it isenabled. The number of entrieswill correctly
reflect the number copied.

Theoper at or = public member function assigns the left hand side dictionary to be a copy
of the right hand side.

cl ear, WCExcept : : out _of _nmenory

Hash Containers 151

WCValHashDict<Key,Value>::operator ==()

Synopsis. #i ncl ude <wchash. h>
public:
i nt operator ==(const WCVal HashDict &) const;

Semantics: Theoper at or == public member function is the equivalence operator for the
WCVal HashDi ct <Key, Val ue> class. Two dictionary objects are equivalent if they are
the same object and share the same address.

Results: A TRUE (non-zero) value isreturned if the left hand side and right hand side dictionary are
the same object. A FALSE (zero) valueis returned otherwise.

152 Hash Containers

WCValHashDict<Key,Value>::remove()

Synopsis. #i ncl ude <wchash. h>
public:
int renmove(const Key &);

Semantics: Ther enpve public member function is used to remove the specified el ement from the

dictionary. If an equivalent element isfound, a non-zero valueisreturned. Zerois returned
if the element is not found. Note that equivalence is based on the equivalence operator of the

Key type.

Results: The element is removed from the dictionary if it found.

Hash Containers 153

WCValHashDict<Key,Value>::resize()

Synopsis. #i ncl ude <wchash. h>
public:
voi d resize(unsigned);

Semantics: Ther esi ze public member function is used to change the number of buckets contained in
the dictionary. If the new number islarger than the previous dictionary size, then the hash
function will be used on all of the stored elements to determine which bucket they should be
stored into. Entries are not destroyed or created in the process of being moved. If thereis
not enough memory to resize the dictionary, the out _of _nenory exception isthrown if it
is enabled, and the dictionary will contain the number of buckets it contained before the
resize. If the new number iszero, thenthe zer o _bucket s exception isthrownif itis
enabled, and no resize will be performed. The dictionary is guaranteed to contain the same
number of entries after the resize.

Results: The dictionary isresized to the new number of buckets.

SeeAlso: WCExcept: :out of nenory, WCExcept: : zer o _bucket s

154 Hash Containers

WCValHashTable<Type>, WCValHashSet<Type>

Declared:

wchash. h

WCVal HashTabl e<Type> and WCVal HashSet <Type> classes are templated classes
used to store objectsin ahash. A hash saves objectsin such away asto make it efficient to
locate and retrieve an element. Asan element islooked up or inserted into the hash, the
value of the element is hashed. Hashing resultsin a numeric index which is used to locate
thevalue. The storage areareferenced by the hash valueis usually called abucket. If more
than one element results in the same hash, the value associated with the hashisplaced in a
list stored in the bucket. A hash table allows more than one copy of an element that is
equivalent, while the hash set allows only one copy. The equality operator of the element’s
typeis used to locate the value.

In the description of each member function, the text Ty pe is used to indicate the template
parameter defining the type of the data to be stored in the hash.

The constructor for the WCVal HashTabl e<Type> and WCVal HashSet <Type> classes
requires a hashing function, which given areferenceto Type, returnsan unsi gned value.
The returned value modulo the number of buckets determines the bucket into which the
element will be located. The return values of the hash function can be spread over the entire
range of unsigned numbers. The hash function return value must be the same for values
which are equivalent by the equivalence operator for Type.

Vaues are copied into the hash, which could be undesirable if the stored objects are
complicated and copying is expensive. Vaue hashes should not be used to store objects of a
base classif any derived types of different sizes would be stored in the hash, or if the
destructor for a derived class must be called.

The WCEXcept classisabase class of the WCVal HashTabl e<Type> and

WCVal HashSet <Type> classes and providesthe except i ons member function. This
member function controls the exceptions which can be thrown by the

WCVal HashTabl e<Type> and WCVal HashSet <Type> objects. No exceptions are
enabled unless they are set by the except i ons member function.

Requirements of Type

TheWCVal HashTabl e<Type> and WCVal HashSet <Type> classesrequires Type to
have:

A default constructor (Type: : Type()).
A well defined copy constructor (Type: : Type(const Type &)).

A well defined assignment operator (Type & operator =(const Type &)).

Hash Containers 155

WCValHashTable<Type>, WCValHashSet<Type>

A well defined equivalence operator with constant parameters
(int operator ==(const Type &) const).

Public Member Functions
The following member functions are declared in the public interface:

WCVal HashSet (unsi gned (*hash_fn)(const Type &), unsigned
WC_DEFAULT_HASH_SI ZE) ;

WCVal HashSet (unsi gned (*hash_fn)(const Type &), unsigned
WC_DEFAULT_HASH_SI ZE, void * (*user _alloc)(size_t size),
void (*user _dealloc)(void *old, size t size));

WCVal HashSet (const WCVal HashSet &);

virtual ~WCval HashSet () ;

WCVal HashTabl e(unsi gned (*hash_fn)(const Type &), unsigned
= WC_DEFAULT_HASH_SI ZE);

WCVal HashTabl e(unsi gned (*hash_fn)(const Type &), unsigned
= WC_DEFAULT_HASH_SI ZE, void * (*user_alloc)(size_t size),
void (*user _dealloc)(void *old, size_t size));

WCVal HashTabl e(const WCVal HashTable &);

virtual ~WCVal HashTabl e();

static unsigned bitHash(const void *, size t);

unsi gned buckets() const;

void clear();

int contains(const Type &) const;

unsi gned entries() const;

int find(const Type & Type &) const;

void forAl'l (void (*user _fn)(Type, void *), void *);

int insert(const Type &);

int isEnpty() const;

int remove(const Type &);

voi d resize(unsigned);

The following public member functions are available for the WCVal HashTabl e class only:

unsi gned occurrencesOf(const Type &) const;
unsi gned renoveAl | (const Type &);

Public Member Operators

The following member operators are declared in the public interface:
WCVal HashSet & operator =(const WVal HashSet &);
i nt operator ==(const WCVal HashSet &) const;

WCVal HashTabl e & operator =(const WCVal HashTable &);
i nt operator ==(const WCVal HashTable &) const;

156 Hash Containers

WCValHashSet<Type>::WCValHashSet()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>

public:

WCVal HashSet (unsi gned (*hash_fn)(const Type &),
unsi gned = WC_DEFAULT_HASH_SI ZE);

The WCVal HashSet <Type> constructor createsa WCVal HashSet object with no entries
and with the number of buckets in the second optional parameter, which defaults to the
constant WC_DEFAULT _HASH_SI ZE (currently defined as 101). The number of buckets
specified must be greater than zero, and will be forced to at least one. If the hash object can
be created, but an allocation failure occurs when creating the buckets, the table will be
created with zero buckets. If the out _of _nenory exception is enabled, then attempting to
insert into a hash table with zero buckets with throw an out _of _nmenory error.

The hash function hash_f n is used to determine which bucket each value will be assigned
to. If no hash function exists, the static member function bi t Hash isavailable to help
create one.

The WCVal HashSet <Type> constructor creates an initialized WCVal HashSet object
with the specified number of buckets and hash function.

~WCVal HashSet , bi t Hash, WCExcept : : out _of _nenory

Hash Containers 157

WCValHashSet<Type>::WCValHashSet()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>

public:

WCVal HashSet (unsi gned (*hash_fn)(const Type &),
unsi gned = WC_DEFAULT_HASH_SI ZE,

void * (*user_alloc)(size_t),

void (*user _dealloc)(void *, size_t));

Allocator and deallocator functions are specified for use when entries are inserted and
removed from the hash. The semantics of this constructor are the same as the constructor
without the memory management functions.

The allocation function must return azero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Y our allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of ahash. To determine the
size of the objects that the memory management functions will be required to alocate and
free, the following macro may be used:

WCVal HashSet | t enSi ze(Type)

The WCVal HashSet <Type> constructor creates an initialized WCVal HashSet object
with the specified number of buckets and hash function.

~WCVal HashSet , bi t Hash, WCExcept : : out _of _nmenory

158 Hash Containers

WCValHashSet<Type>::WCValHashSet()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>
public:
WCVal HashSet (const WCVal HashSet &);

The WCVal HashSet <Type> isthe copy constructor for the WCVal HashSet class. The
new hash is created with the same number of buckets, hash function, all values or pointers
stored in the hash, and the exception trap states. If the hash object can be created, but an
allocation failure occurs when creating the buckets, the hash will be created with zero
buckets. If there is not enough memory to copy al of the values, then only some will be
copied, and the number of entries will correctly reflect the number copied. If all of the
elements cannot be copied, then the out _of _nmenor y exception isthrown if it is enabled.

The WCVal HashSet <Type> constructor createsa WCVal HashSet object whichisa
copy of the passed hash.

~WCVal HashSet , oper at or =, WCExcept :: out _of _nmenory

Hash Containers 159

WCValHashSet<Type>::~WCValHashSet()

Synopsis. #i ncl ude <wchash. h>
public:
virtual ~WCVal HashSet ();

Semantics: The WCVal HashSet <Type> destructor is the destructor for the WCVal HashSet class.
If the number of elementsis not zero and the not _enpt y exception is enabled, the
exception isthrown. Otherwise, the hash elements are cleared using the cl ear member
function. The call to the WCVal HashSet <Type> destructor isinserted implicitly by the
compiler at the point where the WCVal HashSet object goes out of scope.

Results: The call to the WCVal HashSet <Type> destructor destroys a WCVal HashSet object.

SeeAlso: cl ear, WCExcept : : not _enpty

160 Hash Containers

WCValHashTable<Type>::WCValHashTable()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>

public:

WCVal HashTabl e(unsi gned (*hash_fn)(const Type &),
unsi gned = WC_DEFAULT_HASH_SI ZE);

TheWCVal HashTabl e<Type> constructor creates a WCVal HashTabl e object with no
entries and with the number of buckets in the second optional parameter, which defaults to
the constant WC_DEFAULT _HASH_SI ZE (currently defined as 101). The number of
buckets specified must be greater than zero, and will be forced to at least one. If the hash
object can be created, but an allocation failure occurs when creating the buckets, the table
will be created with zero buckets. If the out _of _nmenor y exception is enabled, then
attempting to insert into a hash table with zero buckets with throw an out _of _nenory
error.

The hash function hash_f n is used to determine which bucket each value will be assigned
to. If no hash function exists, the static member function bi t Hash isavailable to help
create one.

The WCVal HashTabl e<Type> constructor creates an initialized WCVal HashTabl e
object with the specified number of buckets and hash function.

~WCVal HashTabl e, bi t Hash, WCExcept : : out _of _menory

Hash Containers 161

WCValHashTable<Type>::WCValHashTable()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>

public:

WCVal HashTabl e(unsi gned (*hash_fn)(const Type &),
unsi gned = WC_DEFAULT_HASH_SI ZE,

void * (*user_alloc)(size_t),

void (*user _dealloc)(void *, size_t));

Allocator and deallocator functions are specified for use when entries are inserted and
removed from the hash. The semantics of this constructor are the same as the constructor
without the memory management functions.

The allocation function must return azero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Y our allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of ahash. To determine the
size of the objects that the memory management functions will be required to alocate and
free, the following macro may be used:

WCVal HashTabl el t eni ze(Type)

The WCVal HashTabl e<Type> constructor creates an initialized WCVal HashTabl e
object with the specified number of buckets and hash function.

~WCVal HashTabl e, bi t Hash, WCExcept : : out _of _nenory

162 Hash Containers

WCValHashTable<Type>::WCValHashTable()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>
public:
WCVal HashTabl e(const WCVal HashTable &);

The WCVal HashTabl e<Type> isthe copy constructor for the WCVal HashTabl e class.
The new hash is created with the same number of buckets, hash function, all values or
pointers stored in the hash, and the exception trap states. If the hash object can be created,
but an allocation failure occurs when creating the buckets, the hash will be created with zero
buckets. If there is not enough memory to copy al of the values, then only some will be
copied, and the number of entries will correctly reflect the number copied. If all of the
elements cannot be copied, then the out _of _nmenor y exception isthrown if it is enabled.

TheWCVal HashTabl e<Type> constructor creates a WCVal HashTabl e object whichis
acopy of the passed hash.

~WCVal HashTabl e, oper at or =, WCExcept : : out _of _nmenory

Hash Containers 163

WCValHashTable<Type>::~WCValHashTable()

Synopsis. #i ncl ude <wchash. h>
public:
virtual ~WCVal HashTabl e();

Semantics: TheWCVal HashTabl e<Type> destructor isthe destructor for the WCVal HashTabl e
class. If the number of elementsis not zero and the not _enpt y exception is enabled, the
exception isthrown. Otherwise, the hash elements are cleared using the cl ear member
function. The cal to the WCVal HashTabl e<Type> destructor isinserted implicitly by
the compiler at the point where the WCVal HashTabl e object goes out of scope.

Results: The call tothe WCVal HashTabl e<Type> destructor destroys a WCVal HashTabl e
object.

SeeAlso: cl ear, WCExcept : : not _enpty

164 Hash Containers

WCValHashTable<Type>::bitHash(), WCValHashSet<Type>::bitHash()

Synopsis. #i ncl ude <wchash. h>
public:
static unsigned bitHash(void *, size_t);

Semantics: Thebi t Hash public member function can be used to implement a hashing function for any
type. A hashing value is generated from the value stored for the number of specified bytes
pointed to by the first parameter. For example:

unsi gned nmy_hash_fn(const int & elem) {
return(WCVal HashSet <i nt, String>::bitHash(&l em sizeof(int));

}
WCVal HashSet <i nt > dat a_obj ect (&y _hash_fn);

Results: The bi t Hash public member function returns an unsigned value which can be used asthe
basis of auser defined hash function.

SeeAlso: WCVal HashSet , WCVal HashTabl e

Hash Containers 165

WCValHashTable<Type>::buckets(), WCValHashSet<Type>::buckets()

Synopsis. #i ncl ude <wchash. h>
public:
unsi gned buckets() const;

Semantics: Thebucket s public member function is used to find the number of buckets contained in
the hash object.

Results: Thebucket s public member function returns the number of bucketsin the hash.

See Also: resi ze

166 Hash Containers

WCValHashTable<Type>::clear(), WCValHashSet<Type>::clear()

Synopsis. #i ncl ude <wchash. h>
public:
void clear();

Semantics: Thecl ear public member function is used to clear the hash so that it has no entries. The
number of buckets remain unaffected. Elements stored in the hash are destroyed using the
destructors of Type. The hash object is not destroyed and re-created by this function, so
the object destructor is not invoked.

Results: The cl ear public member function clears the hash to have no elements.

SeeAlso: ~WCVal HashSet , ~\WCVal HashTabl e, operator =

Hash Containers 167

WCValHashTable<Type>::contains(), WCValHashSet<Type>::contains()

Synopsis. #i ncl ude <wchash. h>
public:
int contains(const Type &) const;

Semantics: Thecont ai ns public member function returns non-zero if the element is stored in the
hash, or zero if there is no equivalent element. Note that equivalence is based on the
equivalence operator of the element type.

Results: The cont ai ns public member function returns a non-zero value if the element isfound in
the hash.

SeeAlso: find

168 Hash Containers

WCValHashTable<Type>::entries(), WCValHashSet<Type>::entries()

Synopsis. #i ncl ude <wchash. h>
public:
unsi gned entries() const;

Semantics: Theent ri es public member function is used to return the current number of elements
stored in the hash.

Results: Theent ri es public member function returns the number of elementsin the hash.

SeeAlso: buckets,i sEnpty

Hash Containers 169

WCValHashTable<Type>::find(), WCValHashSet<Type>::find()

Synopsis. #i ncl ude <wchash. h>
public:
int find(const Type & Type &) const;

Semantics: Thef i nd public member function is used to find an element with an equivalent key in the
hash. If an equivalent element isfound, a non-zero valueisreturned. The reference to the
element passed as the second argument is assigned the found element’svalue. Zerois
returned if the element is not found. Note that equivalence is based on the equivalence
operator of the element type.

Results: The element equivalent to the passed key is located in the hash.

170 Hash Containers

WCValHashTable<Type>::forAll(), WCValHashSet<Type>::forAll()

Synopsis. #i ncl ude <wchash. h>
public:
void forAll(
void (*user_fn)(Type, void *),
void *);

Semantics: Thef or Al | public member function causes the user supplied function to be invoked for
every value in the hash. The user function has the prototype

voi d user func(Type & value, void * data);

Asthe elements are visited, the user function isinvoked with the element passed as the first.
The second parameter of the f or Al | function is passed as the second parameter to the user
function. Thisvalue can be used to pass any appropriate data from the main code to the user
function.

Results: The elementsin the hash are al visited, with the user function being invoked for each one.

SeeAlso: find

Hash Containers 171

WCValHashTable<Type>::insert(), WCValHashSet<Type>::insert()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>
public:
int insert(const Type &);

Thei nsert public member function inserts a value into the hash, using the hash function to
determine to which bucket it should be stored. If allocation of the node to store the value
fails, then the out _of _nenory exceptionisthrown if it isenabled. If the exception is not
enabled, the insert will not be completed.

WithaWCVal HashSet , there must be only one equivalent element in the set. If an
element equivalent to the inserted element is already in the hash set, the hash set will remain
unchanged, and the not _uni que exception isthrownif it isenabled. If the exceptionis
not enabled, the insert will not be compl eted.

At some point, the number of bucketsinitially selected may be too small for the number of
elementsinserted. The resize of the hash can be controlled by the insertion mechanism by
using WCVal HashSet (or WCVal HashTabl e) asabase class, and providing an insert
member function to do a resize when appropriate. Thisinsert could then call

WCVal HashSet : : i nsert (or WCVal HashTabl e: : i nsert) toinsert the element.
Note that copy constructors and assignment operators are not inherited in your class, but you
can provide the following inline definitions (assuming that the class inherited from
WCVaHashTable is named MyHashTable):

inline MyHashTabl e(const MyHashTabl e &orig)
: WCVal HashTabl e(orig) {};

inline MyHashTabl e &operator=(const MyHashTable &orig) {
return(WCVal HashTabl e: : operator=(orig));

}

Thei nsert public member function inserts avalue into the hash. If theinsert is
successful, a non-zero will returned. A zero will be returned if the insert fails.

operat or =, WCExcept :: out _of _nmenory

172 Hash Containers

WCValHashTable<Type>::isEmpty(), WCValHashSet<Type>::isEmpty()

Synopsis. #i ncl ude <wchash. h>
public:
int iseEnpty() const;
Semantics: Thei sEnpt y public member function is used to determine if the hash is empty.

Results: Thei sEnpt y public member function returns zero if it contains at least one entry, non-zero
if the hash is empty.

See Also: buckets,entries

Hash Containers 173

WCValHashTable<Type>::occurencesOf()

Synopsis. #i ncl ude <wchash. h>
public:
unsi gned occurrencesOf(const Type &) const;

Semantics: Theoccur encesOf public member function is used to return the current number of
elements stored in the hash which are equivalent to the passed value. Note that equivalence
is based on the equivalence operator of the element type.

Results: Theoccur encesOf public member function returns the number of elementsin the hash.

SeeAlso: buckets,entries,find,i senpty

174 Hash Containers

WCValHashTable<Type>::operator =(), WCValHashSet<Type>::operator =()

Synopsis. #i ncl ude <wchash. h>
public:
WCVal HashSet & operator =(const WCVal HashSet &);
WCVal HashTabl e & operator =(const WCVal HashTable &);

Semantics: Theoper at or = public member function is the assignment operator for the
WCVal HashTabl e<Type> and WCVal HashSet <Type> classes. Theleft hand side
hash isfirst cleared using the cl ear member function, and then the right hand side hash is
copied. The hash function, exception trap states, and all of the hash elements are copied. If
an alocation failure occurs when creating the buckets, the table will be created with zero
buckets, and the out _of _nenory exceptionisthrown if it isenabled. If thereisnot
enough memory to copy al of the values or pointers in the hash, then only some will be
copied, and the out _of _nenory exceptionisthrown if it isenabled. The number of
entries will correctly reflect the number copied.

Results: Theoper at or = public member function assigns the left hand side hash to be a copy of
the right hand side.

SeeAlso: cl ear, WCExcept : : out _of _menory

Hash Containers 175

WCValHashTable<Type>::operator ==(), WCValHashSet<Type>::operator ==()

Synopsis:

Semantics:

Results:

#i ncl ude <wchash. h>

public:

i nt operator ==(const WCVal HashSet &) const;

i nt operator ==(const WCVal HashTable &) const;

Theoper at or == public member function is the equivalence operator for the
WCVal HashTabl e<Type> and WCVal HashSet <Type> classes. Two hash objects are
equivalent if they are the same object and share the same address.

A TRUE (non-zero) value isreturned if the left hand side and right hand side hash are the
same object. A FALSE (zero) valueisreturned otherwise.

176 Hash Containers

WCValHashTable<Type>::remove(), WCValHashSet<Type>::remove()

Synopsis:

Semantics:

Results:

#i ncl ude <wchash. h>
public:
int renove(const Type &);

Ther enmove public member function is used to remove the specified element from the hash.
If an equivalent element isfound, a non-zero valueisreturned. Zero isreturned if the
element is not found. If the hash is atable and there is more than one element equivalent to
the specified element, then the first equivalent element added to the table isremoved. Note
that equivalence is based on the equivalence operator of the element type.

The element is removed from the hash if it found.

Hash Containers 177

WCValHashTable<Type>::removeAll()

Synopsis. #i ncl ude <wchash. h>
public:
unsi gned renoveAl | (const Type &);

Semantics: Ther enoveAl | public member function is used to remove all elements equivalent to the
specified element from the hash. Zero isreturned if no equivalent elements are found. Note
that equivalence is based on the equivalence operator of the element type.

Results: All equivalent elements are removed from the hash.

178 Hash Containers

WCValHashTable<Type>::resize(), WCValHashSet<Type>::resize()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchash. h>
public:
voi d resize(unsigned);

Ther esi ze public member function is used to change the number of buckets contained in
the hash. If the new number islarger than the previous hash size, then the hash function will
be used on all of the stored elements to determine which bucket they should be stored into.
Entries are not destroyed or created in the process of being moved. If thereis not enough
memory to resize the hash, the out _of _nmenory exception isthrown if it is enabled, and
the hash will contain the number of bucketsit contained before theresize. If the new number
iszero, thenthe zer o_bucket s exceptionisthrown if it is enabled, and no resize will be
performed. The hash is guaranteed to contain the same number of entries after the resize.

The hash is resized to the new number of buckets.

WCExcept : : out _of _menory, WCExcept : : zer o _bucket s

Hash Containers 179

WCValHashTable<Type>::resize(), WCValHashSet<Type>::resize()

180 Hash Containers

11 Hash Iterators

Hash iterators are used to step through a hash one or more elements at atime. Iterators which
are newly constructed or reset are positioned before the first element in the hash. The hash
may be traversed one element at atime using the pre-increment or call operator. An
increment operation causing the iterator to be positioned after the end of the hash returns zero.
Further increments will causethe undef _i t er exception to be thrown, if it isenabled. The
WCI t er Except class provides the common exception handling control interface for al of
theiterators.

Since the iterator classes are all template classes, most of the functionality was derived from
common base classes. Inthelisting of class member functions, those public member
functions which appear to be in the iterator class but are actually defined in the common base
class areidentified asif they were explicitly specified in the iterator class.

Hash Iterators 181

WCPtrHashDictlter<Key,Value>

Declared: wchiter. h

The WCPt r HashDi ct | t er <Key, Val ue> classisthe templated class used to create
iterator objects for WCPt r HashDi ct <Key, Val ue> objects. In the description of each
member function, the text Key isused to indicate the template parameter defining the type of
the indices pointed to by the pointers stored in the dictionary. Thetext Val ue isused to
indicate the template parameter defining the type of the data pointed to by the pointers stored
inthedictionary. The WCI t er Except classis abase class of the

WCPt r HashDi ct | t er <Key, Val ue> class and providesthe except i ons member
function. This member function controls the exceptions which can be thrown by the

WCPt r HashDi ct | t er <Key, Val ue> object. No exceptions are enabled unlessthey are
set by the except i ons member function.

Public Member Functions
The following member functions are declared in the public interface:

WCPt r HashDictlter();

WCPt r HashDi ctIter (const WCPtrHashDi ct <Key, Val ue> &);
~WCPt r HashDictlter();

const WCPt r HashDi ct <Key, Val ue> *cont ai ner() const;

Key *key();

void reset();

voi d reset(WCPtrHashDi ct <Key, Val ue> &);

Val ue * val ue();

Public Member Operators

The following member operators are declared in the public interface:

int operator ()();
int operator ++();

182 Hash lterators

WCPtrHashDictlter<Key,Value>::WCPtrHashDictlter()

Synopsis. #i ncl ude <wchiter. h>
public:
WCPt rHashDi ctlter();

Semantics: The public WCPt r HashDi ct | t er <Key, Val ue> constructor is the default constructor
for the class and initializes the iterator with no hash to operate on. The r eset member
function must be called to provide the iterator with a hash to iterate over.

Results: The public WCPt r HashDi ct | t er <Key, Val ue> constructor creates an initialized
WCPt r HashDi ct | t er hash iterator object.

See Also: ~WCPt r HashDi ctl ter, reset

Hash Iterators 183

WCPtrHashDictlter<Key,Value>::WCPtrHashDictlter()

Synopsis. #i ncl ude <wchiter. h>
public:
WCPt r HashDi ct It er (WCPt r HashDi ct <Key, Val ue> &);

Semantics: The public WCPt r HashDi ct | t er <Key, Val ue> constructor is a constructor for the
class. Thevalue passed as a parameter isa WCPt r HashDi ct hash object. The iterator will
beinitialized for that hash object and positioned before the first hash element. To position
theiterator to avalid element within the hash, increment it using one of the oper at or ++
oroperator () operators.

Results: The public WCPt r HashDi ct | t er <Key, Val ue> constructor creates an initialized
WCPt r HashDi ct | t er hash iterator object positioned before the first element in the hash.

SeeAlso: ~WCPtrHashDictlter, operator (),operator ++,reset

184 Hash lterators

WCPtrHashDictlter<Key,Value>::~WCPtrHashDictlter()

Synopsis. #i ncl ude <wchiter. h>
public:
~WCPt rHashDictlter();

Semantics: The public ~\WWCPt r HashDi ct | t er <Key, Val ue> destructor isthe destructor for the
class. Thecal to the destructor isinserted implicitly by the compiler at the point where the
WCPt r HashDi ct | t er hash iterator object goes out of scope.

Results: The WCPt r HashDi ct | t er hash iterator object is destroyed.

SeeAlso; WCPtrHashDictlter

Hash Iterators 185

WCPtrHashDictlter<Key,Value>::container()

Synopsis. #i ncl ude <wchiter. h>
public:
WCPt r HashDi ct <Key, Val ue> *cont ai ner () const;

Semantics: Thecont ai ner public member function returns a pointer to the hash container object. If
the iterator has not been initialized with a hash object, and the undef _i t er exceptionis
enabled, the exception is thrown.

Results: A pointer to the hash object associated with the iterator is returned, or NULL(0) if the
iterator has not been initialized with a hash.

SeeAlso: WCPtrHashDictlter,reset,WClter Except::undef _iter

186 Hash lterators

WCPtrHashDictlter<Key,Value>::key()

Synopsis. #i ncl ude <wchiter. h>
public:
Key *key();

Semantics: Thekey public member function returns a pointer to the Key value of the hash item at the
current iterator position.

If the iterator is not associated with a hash, or the iterator position is either before the first
element or past the last element in the hash, the current iterator position is undefined. In this
casetheundef _i t emexceptionisthrown, if enabled.

Results: A pointer to Key at the current iterator element is returned. If the current element is
undefined, an undefined pointer is returned.

SeeAlso: operator (),operator ++ reset, Wl terExcept::undef _item

Hash Iterators 187

WCPtrHashDictlter<Key,Value>::operator ()()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchiter. h>
public:
int operator ()();

Theoper at or () public member function isthe call operator for the class. The hash
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the hash, the iterator is positioned after the end of the
hash.

Theoperat or () public member function has the same semantics as the pre-increment
operator, oper at or ++.

If the iterator was positioned before the first hash element, the current item will be set to the
first element. If the hash is empty, the iterator will be positioned after the end of the hash.

If the iterator is not associated with a hash or the iterator position before the increment was
past the last element the hash, the undef _i t er exceptionisthrown, if enabled.

Theoperat or () public member function returns anon-zero value if the iterator is
positioned on a hash item. Zero(0) is returned when the iterator is incremented past the end
of the hash.

operator ++,reset,WClterExcept::undef_iter

188 Hash lterators

WCPtrHashDictlter<Key,Value>::operator ++()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchiter. h>
public:
int operator ++();

Theoper at or ++ public member function is the pre-increment operator for the class.
The hash element which follows the current item is set to be the new current item. If the
previous current item was the last element in the hash, the iterator is positioned after the end
of the hash.

Theoper at or ++ public member function has the same semantics as the call operator,
operator ().

The current item will be set to the first hash element if the iterator was positioned before the
first element in the hash. If the hash is empty, the iterator will be positioned after the end of
the hash.

If the iterator is not associated with a hash or the iterator position before the increment was
past the last element the hash, the undef _i t er exceptionisthrown, if enabled.

Theoper at or ++ public member function returns anon-zero value if the iterator is
positioned on a hash item. Zero(0) is returned when the iterator is incremented past the end
of the hash.

operator (),reset,WClterExcept::undef_iter

Hash Iterators 189

WCPtrHashDictlter<Key,Value>::reset()

Synopsis. #i ncl ude <wchiter. h>
public:
void reset();

Semantics: Ther eset public member function resets the iterator to theinitial state, positioning the
iterator before the first element in the associated hash.

Results: The iterator is positioned before the first hash element.

SeeAlso: WCPtrHashDi ctlter, container

190 Hash lterators

WCPtrHashDictlter<Key,Value>::reset()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchiter. h>
public:
voi d reset(WCPtrHashDi ct <Key, Val ue> &);

Ther eset public member function resets the iterator to operate on the specified hash. The
iterator is positioned before the first element in the hash.

The iterator is positioned before the first element of the specified hash.

WCPt r HashDi ct | t er, cont ai ner

Hash Iterators 191

WCPtrHashDictlter<Key,Value>::value()

Synopsis. #i ncl ude <wchiter. h>
public:
Val ue *val ue();

Semantics: Theval ue public member function returns a pointer to the Val ue the current iterator
position.

If the iterator is not associated with a hash, or the iterator position is either before the first
element or past the last element in the hash, the current iterator position is undefined. In this
casetheundef _i t emexception isthrown, if enabled.

Results: A pointer to the Val ue at the current iterator element isreturned. If the current element is
undefined, an undefined pointer is returned.

SeeAlso: operator (),operator ++ reset, Wl terExcept::undef _item

192 Hash lterators

WCValHashDictlter<Key,Value>

Declared:

wchiter. h

TheWCVal HashDi ct | t er <Key, Val ue> classisthe templated class used to create
iterator objects for WCVal HashDi ct <Key, Val ue> objects. In the description of each
member function, the text Key isused to indicate the template parameter defining the type of
the indices used to store datain the dictionary. Thetext Val ue isused to indicate the
template parameter defining the type of the data stored in the dictionary. The

WCl t er Except classisabase class of the WCVal HashDi ct | t er <Key, Val ue> class
and providesthe except i ons member function. This member function controls the
exceptions which can be thrown by the WCVal HashDi ct | t er <Key, Val ue> object. No
exceptions are enabled unless they are set by the except i ons member function.

Public Member Functions

The following member functions are declared in the public interface:

WCVal HashDictlter();

WCVal HashDi ctlter(const WCVal HashDi ct <Key, Val ue> &);
~WCVal HashDi ctlter();

const WCVal HashDi ct <Key, Val ue> *contai ner() const;

Key key();

void reset();

voi d reset(WCVal HashDi ct <Key, Val ue> &);

Val ue val ue();

Public Member Operators

The following member operators are declared in the public interface:

int operator ()():
int operator ++();

Hash Iterators 193

WCValHashDictlter<Key,Value>::WCValHashDictlter()

Synopsis. #i ncl ude <wchiter. h>
public:
WCVal HashDictlter();

Semantics: The public WCVal HashDi ct | t er <Key, Val ue> constructor is the default constructor
for the class and initializes the iterator with no hash to operate on. The r eset member
function must be called to provide the iterator with a hash to iterate over.

Results: The public WCVal HashDi ct | t er <Key, Val ue> constructor creates an initialized
WCVal HashDi ct | t er hash iterator object.

See Also: ~WCVal HashDi ctlter, reset

194 Hash lterators

WCValHashDictlter<Key,Value>::WCValHashDictlter()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wchiter. h>
public:
WCVal HashDi ctlter (WCVal HashDi ct <Key, Val ue> &);

The public WCVal HashDi ct | t er <Key, Val ue> constructor isa constructor for the
class. Thevalue passed as a parameter isa WCVal HashDi ct hash object. Theiterator will
beinitialized for that hash object and positioned before the first hash element. To position
theiterator to avalid element within the hash, increment it using one of the oper at or ++
oroperator () operators.

The public WCVal HashDi ct | t er <Key, Val ue> constructor creates an initialized
WCVal HashDi ct | t er hash iterator object positioned before the first element in the hash.

~WCVal HashDi ctlter, operator (), operator ++ reset

Hash Iterators 195

WCValHashDictlter<Key,Value>::~WCValHashDictlter()

Synopsis. #i ncl ude <wchiter. h>
public:
~WCVal HashDictlter();

Semantics: The public ~\WWCVal HashDi ct | t er <Key, Val ue> destructor isthe destructor for the
class. Thecal to the destructor isinserted implicitly by the compiler at the point where the
WCVal HashDi ct | t er hash iterator object goes out of scope.

Results: TheWCVal HashDi ct | t er hash iterator object is destroyed.

SeeAlso; WCVal HashDictlter

196 Hash lterators

WCValHashDictlter<Key,Value>::container()

Synopsis. #i ncl ude <wchiter. h>
public:
WCVal HashDi ct <Key, Val ue> *cont ai ner () const;

Semantics: Thecont ai ner public member function returns a pointer to the hash container object. If
the iterator has not been initialized with a hash object, and the undef _i t er exceptionis
enabled, the exception is thrown.

Results: A pointer to the hash object associated with the iterator is returned, or NULL(0) if the
iterator has not been initialized with a hash.

SeeAlso: WCVal HashDi ctlter, reset,WCl t er Except:: undef _iter

Hash Iterators 197

WCValHashDictlter<Key,Value>::key()

Synopsis. #i ncl ude <wchiter. h>
public:
Key key();

Semantics: Thekey public member function returnsthe value of Key at the current iterator position.
If the iterator is not associated with a hash, or the iterator position is either before the first
element or past the last element in the hash, the current iterator position is undefined. In this
casetheundef _i t emexceptionisthrown, if enabled.

Results: The value of Key at the current iterator element isreturned. If the current element is
undefined, a default initialized object is returned.

SeeAlso: operator (),operator ++,reset,WClterExcept::undef_item

198 Hash lterators

WCValHashDictlter<Key,Value>::operator ()()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchiter. h>
public:
int operator ()();

Theoper at or () public member function isthe call operator for the class. The hash
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the hash, the iterator is positioned after the end of the
hash.

Theoperat or () public member function has the same semantics as the pre-increment
operator, oper at or ++.

If the iterator was positioned before the first hash element, the current item will be set to the
first element. If the hash is empty, the iterator will be positioned after the end of the hash.

If the iterator is not associated with a hash or the iterator position before the increment was
past the last element the hash, the undef _i t er exceptionisthrown, if enabled.

Theoperat or () public member function returns anon-zero value if the iterator is
positioned on a hash item. Zero(0) is returned when the iterator is incremented past the end
of the hash.

operator ++,reset,WClterExcept::undef_iter

Hash Iterators 199

WCValHashDictlter<Key,Value>::operator ++()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchiter. h>
public:
int operator ++();

Theoper at or ++ public member function is the pre-increment operator for the class.
The hash element which follows the current item is set to be the new current item. If the
previous current item was the last element in the hash, the iterator is positioned after the end
of the hash.

Theoper at or ++ public member function has the same semantics as the call operator,
operator ().

The current item will be set to the first hash element if the iterator was positioned before the
first element in the hash. If the hash is empty, the iterator will be positioned after the end of
the hash.

If the iterator is not associated with a hash or the iterator position before the increment was
past the last element the hash, the undef _i t er exceptionisthrown, if enabled.

Theoper at or ++ public member function returns anon-zero value if the iterator is
positioned on a hash item. Zero(0) is returned when the iterator is incremented past the end
of the hash.

operator (),reset,WClterExcept::undef_iter

200 Hash Iterators

WCValHashDictlter<Key,Value>::reset()

Synopsis. #i ncl ude <wchiter. h>
public:
void reset();

Semantics: Ther eset public member function resets the iterator to theinitial state, positioning the
iterator before the first element in the associated hash.

Results: The iterator is positioned before the first hash element.

SeeAlso: WCVal HashDi ct |t er, cont ai ner

Hash Iterators 201

WCValHashDictlter<Key,Value>::reset()

Synopsis. #i ncl ude <wchiter. h>
public:
voi d reset(WCVal HashDi ct <Key, Val ue> &);

Semantics: Ther eset public member function resets the iterator to operate on the specified hash. The
iterator is positioned before the first element in the hash.

Results: The iterator is positioned before the first element of the specified hash.

SeeAlso: WCVal HashDi ct |t er, cont ai ner

202 Hash Iterators

WCValHashDictlter<Key,Value>::value()

Synopsis. #i ncl ude <wchiter. h>
public:
Val ue val ue();

Semantics: Theval ue public member function returnsthe value of Val ue at the current iterator
position.

If the iterator is not associated with a hash, or the iterator position is either before the first
element or past the last element in the hash, the current iterator position is undefined. In this
casetheundef _i t emexception isthrown, if enabled.

Results: The value of the Val ue at the current iterator element isreturned. If the current element is
undefined, adefault initialized object is returned.

SeeAlso: operator (),operator ++ reset, Wl terExcept::undef _item

Hash Iterators 203

WCPtrHashSetlter<Type>, WCPtrHashTablelter<Type>

Declared: wchiter. h

The WCPt r HashSet | t er <Type> and WCPt r HashTabl el t er <Type> classes arethe
templated classes used to create iterator objects for WCPt r HashTabl e<Type> and

WCPt r HashSet <Type> objects. In the description of each member function, the text
Type isused to indicate the hash element type specified as the template parameter. The

WCI t er Except classisabase class of the WCPt r HashSet | t er <Type> and

WCPt r HashTabl el t er <Type> classes and providesthe except i ons member
function. This member function controls the exceptions which can be thrown by the

WCPt r HashSet | t er <Type> and WCPt r HashTabl el t er <Type> objects. No
exceptions are enabled unless they are set by the except i ons member function.

Public Member Functions
The following member functions are declared in the public interface:

WCPt r HashSet I ter () ;

WCPt r HashSet | ter (const WCPt r HashSet <Type> &);
~WCPt r HashSet I ter () ;

WCPt r HashTabl el ter () ;

WCPt r HashTabl el ter (const WCPt r HashTabl e<Type> &);

~WCPt r HashTabl el ter () ;

const WCPtrHashTabl e<Type> *cont ai ner () const;

const WCPtrHashSet <Type> *contai ner() const;

Type *current() const;

void reset();

voi d WCPt r HashSet | t er <Type>: : reset (WCPtr HashSet <Type> &);
voi d WCPt r HashTabl el t er <Type>::reset (WCPtr HashTabl e<Type> &

)
Public Member Operators
The following member operators are declared in the public interface:

int operator ()();
int operator ++();

204 Hash Iterators

WCPtrHashSetlter<Type>::WCPtrHashSetlter()

Synopsis. #i ncl ude <wchiter. h>
public:
WCPt r HashSet I ter () ;

Semantics: The public WCPt r HashSet | t er <Type> constructor is the default constructor for the
class and initializes the iterator with no hash to operate on. The r eset member function
must be called to provide the iterator with a hash to iterate over.

Results: The public WCPt r HashSet | t er <Type> constructor creates an initialized
WCPt r HashSet | t er hash iterator object.

See Also; ~WCPt r HashSet | t er, WCPt r HashTabl el t er, r eset

Hash Iterators 205

WCPtrHashSetlter<Type>::WCPtrHashSetlter()

Synopsis. #i ncl ude <wchiter. h>
public:
WCPt r HashSet | t er (WCPt r HashSet <Type> &);

Semantics: The public WCPt r HashSet | t er <Type> constructor is a constructor for the class. The
value passed as a parameter isa WCPt r HashSet hash object. The iterator will be
initialized for that hash object and positioned before the first hash element. To position the
iterator to avalid element within the hash, increment it using one of the oper at or ++ or
operator () operators.

Results: The public WCPt r HashSet | t er <Type> constructor creates an initialized
WCPt r HashSet | t er hashiterator object positioned before the first element in the hash.

SeeAlso: ~WCPtrHashSet|ter,operator (),operator ++,reset

206 Hash Iterators

WCPtrHashSetlter<Type>::~WCPtrHashSetlter()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchiter. h>

public:

~WCPt r HashSet | ter () ;

The public ~WWCPt r HashSet | t er <Type> destructor is the destructor for the class. The
call to the destructor isinserted implicitly by the compiler at the point where the

WCPt r HashSet | t er hashiterator object goes out of scope.

The WCPt r HashSet | t er hashiterator object is destroyed.

WCPt r HashSet | t er, WCPt r HashTabl el t er

Hash Iterators 207

WCPtrHashTablelter<Type>::WCPtrHashTablelter()

Synopsis. #i ncl ude <wchiter. h>
public:
WCPt r HashTabl el ter () ;

Semantics: The public WCPt r HashTabl el t er <Type> constructor is the default constructor for the
class and initializes the iterator with no hash to operate on. The r eset member function
must be called to provide the iterator with a hash to iterate over.

Results: The public WCPt r HashTabl el t er <Type> constructor creates an initialized
WCPt r HashTabl el t er hash iterator object.

See Also; ~WCPt r HashTabl el t er, WCPt r HashSet | t er, r eset

208 Hash Iterators

WCPtrHashTablelter<Type>::WCPtrHashTablelter()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchiter. h>
public:
WCPt r HashTabl el t er (WCPt r HashTabl e<Type> &);

The public WCPt r HashTabl el t er <Type> constructor is a constructor for the class.
The value passed as a parameter isa WCPt r HashTabl e hash object. Theiterator will be
initialized for that hash object and positioned before the first hash element. To position the
iterator to avalid element within the hash, increment it using one of the oper at or ++ or
operator () operators.

The public WCPt r HashTabl el t er <Type> constructor creates an initialized
WCPt r HashTabl el t er hash iterator object positioned before the first element in the
hash.

~WCPt r HashTabl el t er, operator (), operator ++,reset

Hash Iterators 209

WCPtrHashTablelter<Type>::~WCPtrHashTablelter()

Synopsis. #i ncl ude <wchiter. h>
public:
~WCPt r HashTabl el ter () ;
Semantics: The WCPt r HashTabl el t er <Type> destructor is the destructor for the class. The call to
the destructor isinserted implicitly by the compiler at the point where the
WCPt r HashTabl el t er hash iterator object goes out of scope.
Results: The WCPt r HashTabl el t er hash iterator object is destroyed.

SeeAlso: WCPtrHashSet|ter, WCPt r HashTabl el t er

210 Hash Iterators

WCPtrHashSetlter<Type> WCPtrHashTablelter<Type>::container()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchiter. h>

public:

WCPt r HashTabl e<Type> *WCPt r HashTabl el t er <Type>: : cont ai ner ()
const;

WCPt r HashSet <Type> *WCPt r HashSet | t er <Type>: : contai ner () const;

Thecont ai ner public member function returns a pointer to the hash container object. |If
the iterator has not been initialized with a hash object, and the undef _i t er exceptionis
enabled, the exception is thrown.

A pointer to the hash object associated with the iterator is returned, or NULL(O) if the
iterator has not been initialized with a hash.

WCPt r HashSet | t er, WCPt r HashTabl el t er, reset,
WCI t er Except : : undef _iter

Hash Iterators 211

WCPtrHashSetlter<Type>::current(), WCPtrHashTablelter<Type>::current()

Synopsis. #i ncl ude <wchiter. h>
public:
Type *current();

Semantics: Thecurrent public member function returns a pointer to the hash item at the current
iterator position.

If the iterator is not associated with a hash, or the iterator position is either before the first
element or past the last element in the hash, the current iterator position is undefined. In this
casetheundef _i t emexceptionisthrown, if enabled.

Results: A pointer to the current iterator element is returned. If the current element is undefined,
NULL(O) is returned.

SeeAlso: operator (),operator ++ reset, Wl terExcept::undef _item

212 Hash Iterators

WCPtrHashSetlter<Type> WCPtrHashTablelter<Type>::operator ()()

Synopsis. #i ncl ude <wchiter. h>
public:
int operator ()();

Semantics. Theoper at or () public member function isthe call operator for the class. The hash
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the hash, the iterator is positioned after the end of the
hash.

Theoperat or () public member function has the same semantics as the pre-increment
operator, oper at or ++.

If the iterator was positioned before the first hash element, the current item will be set to the
first element. If the hash is empty, the iterator will be positioned after the end of the hash.

If the iterator is not associated with a hash or the iterator position before the increment was
past the last element the hash, the undef _i t er exceptionisthrown, if enabled.

Results: Theoperat or () public member function returns anon-zero value if the iterator is
positioned on a hash item. Zero(0) is returned when the iterator is incremented past the end
of the hash.

SeeAlso: operator ++,reset,WClterExcept::undef_iter

Hash Iterators 213

WCPtrHashSetlter<Type>,WCPtrHashTablelter<Type>::operator ++()

Synopsis. #i ncl ude <wchiter. h>
public:
i nt operator ++();

Semantics: Theoper at or ++ public member function is the pre-increment operator for the class.
The hash element which follows the current item is set to be the new current item. If the
previous current item was the last element in the hash, the iterator is positioned after the end

of the hash.

Theoper at or ++ public member function has the same semantics as the call operator,

operator ().

The current item will be set to the first hash element if the iterator was positioned before the
first element in the hash. If the hash is empty, the iterator will be positioned after the end of

the hash.

If the iterator is not associated with a hash or the iterator position before the increment was

past the last element the hash, the undef _i t er exceptionisthrown, if enabled.

Results: Theoper at or ++ public member function returns anon-zero value if the iterator is
positioned on a hash item. Zero(0) is returned when the iterator is incremented past the end

of the hash.

SeeAlso: current,operator (),reset, Wl terExcept::undef_iter

214 Hash Iterators

WCPtrHashSetlter<Type>::reset(), WCPtrHashTablelter<Type>::reset()

Synopsis. #i ncl ude <wchiter. h>
public:
void reset();

Semantics: Ther eset public member function resets the iterator to theinitial state, positioning the
iterator before the first element in the associated hash.

Results: The iterator is positioned before the first hash element.

SeeAlso: WCPtrHashSet |t er, WCPt r HashTabl el t er, cont ai ner

Hash Iterators 215

WCPtrHashSetlter<Type>::reset(), WCPtrHashTablelter<Type>::reset()

Synopsis. #i ncl ude <wchiter. h>
public:
voi d WCPt r HashSet | t er <Type>: : reset (WCPtr HashSet <Type> &);
voi d WCPt r HashTabl el t er <Type>: :reset (WCPtrHashTabl e<Type> &

)

Semantics. Ther eset public member function resets the iterator to operate on the specified hash. The
iterator is positioned before the first element in the hash.

Results: Theiterator is positioned before the first element of the specified hash.

See Also: WCPt r HashSet | t er , WCPt r HashTabl el t er, cont ai ner

216 Hash Iterators

WCValHashSetlter<Type>, WCValHashTablelter<Type>

Declared: wchiter. h

TheWCVal HashSet | t er <Type> and WCVal HashTabl el t er <Type> classes arethe
templated classes used to create iterator objects for WCVal HashTabl e<Type> and

WCVal HashSet <Type> objects. In the description of each member function, the text
Type isused to indicate the hash element type specified as the template parameter. The

WCI t er Except classisabase class of the WCVal HashSet | t er <Type> and

WCVal HashTabl el t er <Type> classes and providesthe except i ons member
function. This member function controls the exceptions which can be thrown by the

WCVal HashSet | t er <Type> and WCVal HashTabl el t er <Type> objects. No
exceptions are enabled unless they are set by the except i ons member function.

Public Member Functions
The following member functions are declared in the public interface:

WCVal HashSet I ter();

WCVal HashSet | ter (const WCVal HashSet <Type> &);

~WCVal HashSet I ter ();

WCVal HashTabl el ter();

WCVal HashTabl el ter (const WCVal HashTabl e<Type> &);

~WCVal HashTabl el ter();

const WCVal HashTabl e<Type> *cont ai ner () const;

const WCVal HashSet <Type> *contai ner() const;

Type current() const;

void reset();

voi d WCVal HashSet | t er <Type>: : reset (WCVal HashSet <Type> &);
voi d WCVal HashTabl el t er <Type>: :reset (WCVal HashTabl e<Type> &

)
Public Member Operators
The following member operators are declared in the public interface:

int operator ()();
int operator ++();

Hash Iterators 217

WCValHashSetlter<Type>::WCValHashSetlter()

Synopsis. #i ncl ude <wchiter. h>
public:
WCVal HashSet I ter();

Semantics: The public WCVal HashSet | t er <Type> constructor is the default constructor for the
class and initializes the iterator with no hash to operate on. The r eset member function
must be called to provide the iterator with a hash to iterate over.

Results: The public WCVal HashSet | t er <Type> constructor creates an initialized
WCVal HashSet | t er hash iterator object.

See Also; ~WCVal HashSet | t er, WCVal HashTabl el ter, r eset

218 Hash Iterators

WCValHashSetlter<Type>::WCValHashSetlter()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wchiter. h>
public:
WCVal HashSet | t er (WCVal HashSet <Type> &);

The public WCVal HashSet | t er <Type> constructor is a constructor for the class. The
value passed as a parameter isa WCVal HashSet hash object. Theiterator will be
initialized for that hash object and positioned before the first hash element. To position the
iterator to avalid element within the hash, increment it using one of the oper at or ++ or
operator () operators.

The public WCVal HashSet | t er <Type> constructor creates aninitialized
WCVal HashSet | t er hashiterator object positioned before the first element in the hash.

~WCVal HashSet | t er, operator (), operator ++,reset

Hash Iterators 219

WCValHashSetlter<Type>::~WCValHashSetlter()

Synopsis. #i ncl ude <wchiter. h>
public:
~WCVal HashSet I ter();
Semantics: The public ~WCVal HashSet | t er <Type> destructor is the destructor for the class. The
call to the destructor isinserted implicitly by the compiler at the point where the
WCVal HashSet | t er hashiterator object goes out of scope.
Results: TheWCVal HashSet | t er hashiterator object is destroyed.

SeeAlso:. WCVal HashSet | t er, WCVal HashTabl el t er

220 Hash Iterators

WCValHashTablelter<Type>::WCValHashTablelter()

Synopsis. #i ncl ude <wchiter. h>
public:
WCVal HashTabl el ter () ;

Semantics: The public WCVal HashTabl el t er <Type> constructor is the default constructor for the
class and initializes the iterator with no hash to operate on. The r eset member function
must be called to provide the iterator with a hash to iterate over.

Results: The public WCVal HashTabl el t er <Type> constructor creates an initialized
WCVal HashTabl el t er hashiterator object.

See Also; ~WCVal HashTabl el t er, WCVal HashSet | ter, r eset

Hash Iterators 221

WCValHashTablelter<Type>::WCValHashTablelter()

Synopsis. #i ncl ude <wchiter. h>
public:
WCVal HashTabl el t er (WCVal HashTabl e<Type> &);

Semantics: The public WCVal HashTabl el t er <Type> constructor is a constructor for the class.
The value passed as a parameter isa WCVal HashTabl e hash object. Theiterator will be
initialized for that hash object and positioned before the first hash element. To position the
iterator to avalid element within the hash, increment it using one of the oper at or ++ or
operator () operators.

Results: The public WCVal HashTabl el t er <Type> constructor creates an initialized
WCVal HashTabl el t er hash iterator object positioned before the first element in the
hash.

SeeAlso: ~WCVal HashTabl el ter, operator (), operator ++, reset

222 Hash Iterators

WCValHashTablelter<Type>::~WCValHashTablelter()

Synopsis. #i ncl ude <wchiter. h>
public:
~WCVal HashTabl el ter () ;
Semantics: TheWCVal HashTabl el t er <Type> destructor is the destructor for the class. The call to
the destructor isinserted implicitly by the compiler at the point where the
WCVal HashTabl el t er hash iterator object goes out of scope.
Results: TheWCVal HashTabl el t er hash iterator object is destroyed.

SeeAlso:. WCVal HashSet | t er, WCVal HashTabl el t er

Hash Iterators 223

WCValHashSetlter<Type>,WCValHashTablelter<Type>::container()

Synopsis. #i ncl ude <wchiter. h>
public:
WCVal HashTabl e<Type> *WCVal HashTabl el t er <Type>: : cont ai ner ()
const;
WCVal HashSet <Type> *WCVal HashSet | t er <Type>: : contai ner() const;

Semantics. Thecont ai ner public member function returns a pointer to the hash container object. If
the iterator has not been initialized with a hash object, and the undef _i t er exceptionis
enabled, the exception is thrown.

Results: A pointer to the hash object associated with the iterator is returned, or NULL(O) if the
iterator has not been initialized with a hash.

SeeAlso:. WCVal HashSet | t er, WCVal HashTabl el ter, reset,
WCI t er Except : : undef _iter

224 Hash Iterators

WCValHashSetlter<Type>::current(), WCValHashTablelter<Type>::current()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchiter. h>
public:
Type current();

Thecur r ent public member function returns the value of the hash element at the current
iterator position.

If the iterator is not associated with a hash, or the iterator position is either before the first
element or past the last element in the hash, the current iterator position is undefined. In this
casetheundef _i t emexceptionisthrown, if enabled.

The value at the current iterator element isreturned. If the current element is undefined, a
default initialized object is returned.

operator (),operator ++,reset, Wl terExcept::undef _item

Hash Iterators 225

WCValHashSetlter<Type>,WCValHashTablelter<Type>::operator ()()

Synopsis. #i ncl ude <wchiter. h>
public:
int operator ()();

Semantics. Theoper at or () public member function isthe call operator for the class. The hash
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the hash, the iterator is positioned after the end of the
hash.

Theoperat or () public member function has the same semantics as the pre-increment
operator, oper at or ++.

If the iterator was positioned before the first hash element, the current item will be set to the
first element. If the hash is empty, the iterator will be positioned after the end of the hash.

If the iterator is not associated with a hash or the iterator position before the increment was
past the last element the hash, the undef _i t er exceptionisthrown, if enabled.

Results: Theoperat or () public member function returns anon-zero value if the iterator is
positioned on a hash item. Zero(0) is returned when the iterator is incremented past the end
of the hash.

SeeAlso: operator ++,reset,WClterExcept::undef_iter

226 Hash Iterators

WCValHashSetlter<Type> WCValHashTablelter<Type>::operator ++()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchiter. h>
public:
int operator ++();

Theoper at or ++ public member function is the pre-increment operator for the class.
The hash element which follows the current item is set to be the new current item. If the
previous current item was the last element in the hash, the iterator is positioned after the end
of the hash.

Theoper at or ++ public member function has the same semantics as the call operator,
operator ().

The current item will be set to the first hash element if the iterator was positioned before the
first element in the hash. If the hash is empty, the iterator will be positioned after the end of
the hash.

If the iterator is not associated with a hash or the iterator position before the increment was
past the last element the hash, the undef _i t er exceptionisthrown, if enabled.

Theoper at or ++ public member function returns anon-zero value if the iterator is
positioned on a hash item. Zero(0) is returned when the iterator is incremented past the end
of the hash.

current,operator (),reset,WC terExcept::undef_iter

Hash Iterators 227

WCValHashSetlter<Type>::reset(), WCValHashTablelter<Type>::reset()

Synopsis. #i ncl ude <wchiter. h>
public:
void reset();

Semantics: Ther eset public member function resets the iterator to theinitial state, positioning the
iterator before the first element in the associated hash.

Results: The iterator is positioned before the first hash element.

SeeAlso: WCVal HashSet | t er, WCVal HashTabl el t er, cont ai ner

228 Hash Iterators

WCValHashSetlter<Type>::reset(), WCValHashTablelter<Type>::reset()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wchiter. h>

public:

voi d WCVal HashSet | t er <Type>: : reset (WCVal HashSet <Type> &);
voi d WCVal HashTabl el t er <Type>: :reset (WVal HashTabl e<Type> &

)

Ther eset public member function resets the iterator to operate on the specified hash. The
iterator is positioned before the first element in the hash.

Theiterator is positioned before the first element of the specified hash.

WCVal HashSet | t er , WCVal HashTabl el t er, cont ai ner

Hash Iterators 229

WCValHashSetlter<Type>::reset(), WCValHashTablelter<Type>::reset()

230 Hash Iterators

12 List Containers

List containers are single or double linked lists. The choice of which type of list to useis
determined by the direction in which the list is traversed and by what is stored in the list. A
list to which items are just added and removed may be most efficiently implemented as a
singlelinked list. If frequent retrievals of items at given indexes within the list are made,
double linked lists can offer some improved search performance.

There are three sets of list container classes. value, pointer and intrusive.

Vaue lists are the smplest to use but have the most requirements on the type stored in the
lists. Copies are made of the values stored in the list, which could be undesirable if the stored
objects are complicated and copying is expensive. Value lists should not be used to store
objects of abase classif any derived types of different sizeswould be stored in thelist, or if
the destructor for the derived class must be called. The WCVal SLi st <Type> container
classimplements single linked value lists, and the WCVal DLi st <Type> class double linked
vauelists.

Pointer list elements store pointers to objects. No creating, copying or destroying of objects
stored in the list occurs. The only requirement of the type pointed to is that an equivalence
operator is provided so that lookups can be performed. The WCPt r SLi st <Type> class
implements single linked pointer lists, and the WCPt r DLi st <Type> class double linked
pointer lists.

Intrusive lists require that the list elements are objects derived from the WCSLi nk or

WCDLi nk class, depending on whether asingle or double linked list isused. Thelist classes
require nothing else from the list elements. No creating, destroying or copying of any object
is performed by the intrusive list classes, and must be done by the user of the class. One
advantage of an intrusivelist isalist element can be removed from one list and inserted into
another list without creating new list element objects or deleting old objects. The

WCI svSLi st <Type> classimplements single linked intrusive lists, and the

WCI svDLi st <Type> classdouble linked intrusive lists.

A list may be traversed using the corresponding list iterator class. Iterators alow liststo be
stepped through one or more elements at atime. The iterator classes which correspond to
single linked list containers have some functionality inhibited. If backward traversal is
required, the double linked containers and iterators must be used.

List Containers 231

WCValHashSetlter<Type>::reset(), WCValHashTablelter<Type>::reset()

The classes are presented in a phabetical order. The WCSLi nk and WCDLi nk class provide a
common control interface for the list elements for the intrusive classes.

Since the container classes are al template classes, deriving most of the functionality from
common base classes was used. In thelisting of class member functions, those public member
functions which appear to be in the container class but are actually defined in the common
base class are identified asif they were explicitly specified in the container class.

232 List Containers

WCDLink

Declared: wcl com h

Derived from:

See Also:

WCSLi nk

The WCDLi nk classisthe building block for al of the double linked list classes. Itis
implemented in terms of the WCSLi nk base class. Since no user data is stored directly with
it, the WCDLi nk class should only be used as a base class to derive a user defined class.

When creating a double linked intrusive list, the WCDLi nk classis used to derive the user
defined class that holds the data to be inserted into the list.

Thewcl com h header fileisincluded by the wel i st . h header file. Thereisno needto
explicitly include the wcl com h header file unlessthe wel i st . h header fileis not
included. No errorswill result if it isincluded.

Note that the destructor is non-virtual so that list elements are of minimum size. Objects
created as a class derived from the WCDLi nk class, but destroyed while typed as a

WCDLi nk object will not invoke the destructor of the derived class.

Public Member Functions

The following public member functions are declared:

WCDLi nk() ;
~WCDLi nk();

WCSLi nk

List Containers 233

WCDLink::WCDLink()

Synopsis. #i ncl ude <wclist. h>
public:
WCDLi nk() ;
Semantics: The public WCDLi nk constructor creates an WCDLi nk object. The public WCDLi nk

constructor is used implicitly by the compiler when it generates a constructor for a derived
class.

Results: The public WCDLi nk constructor produces an initialized WCDLi nk object.

See Also: ~WCDLi nk

234 List Containers

WCDLink::~WCDLink()

Synopsis. #i ncl ude <wclist. h>
public:
~WCDLi nk();

Semantics: The public ~\WCDLi nk destructor does not do anything explicit. The call to the public
~WCDLi nk destructor isinserted implicitly by the compiler at the point where the object
derived from WCDLink goes out of scope.

Results: The object derived from WCDLinK is destroyed.

SeeAlso: WCDLi nk

List Containers 235

WClsvSList<Type>, WCIsvDList<Type>

Declared: wclist.h

TheWCl svSLi st <Type> and WCI svDLi st <Type> classes are the templated classes
used to create objects which are single or double linked lists. The created list isintrusive,
which means that list elements which are inserted must be created with alibrary supplied
base class. The class WCSLi nk provides the base class definition for single linked lists, and
should be inherited by the definition of any list item for single linked lists. It providesthe
linkage that is used to traverse the list elements. Similarly, the class WCDLi nk providesthe
base class definition for double lists, and should be inherited by the definition of any list item
for double lists.

In the description of each member function, the text Ty pe isused to indicate the type value
specified as the template parameter. Ty pe isthetype of the list elements, derived from
WCSLi nk or WCDLi nk.

The WCEXxcept classisabase class of the WCI svSLi st <Type> and

WCI svDLi st <Type> classes and providesthe except i ons member function. This
member function controls the exceptions which can be thrown by the

WCI svSLi st <Type> and WCI svDLi st <Type> objects. No exceptions are enabled
unless they are set by the except i ons member function.

Requirements of Type

TheWCl svSLi st <Type> classrequiresonly that Type isderived from WCSLi nk. The
WCl svDLi st <Type> classrequiresonly that Type isderived from WCDLi nk.

Private Member Functions

Inanintrusive list, copying alist isundefined. Setting the copy constructor and assignment
operator as private is the standard mechanism to ensure a copy cannot be made. The
following member functions are declared private:

void WCl svSList(const Wl svSList &);
voi d WCl svDLi st(const Wl svDList &);

WCI svSLi st & WCI svSLi st::operator =(const WClsvSList &);
WCI svDLi st & WCI svDLi st::operator =(const WClsvDList &);

Public Member Functions

The following member functions are declared in the public interface:

WCI svSLi st ();
~WCl svSLi st ();
WCI svDLi st () ;

236 List Containers

WClsvSList<Type>, WCIsvDList<Type>

~WCl svDLi st () ;

i nt append(Type *);

void clear();

voi d cl ear AndDest roy();

int contains(const Type *) const;

int entries() const;

Type * find(int = 0) const;

Type * findLast() const;

void forAll(void (*)(Type *, void *), void *);
Type * get(int = 0);

int index(const Type *) const;

int index(int (*)(const Type *, void *), void *) const;
int insert(Type *);

int isEnpty() const;

Public Member Operators
The following member operators are declared in the public interface:

int WCl svSLi st::operator ==(const Wl svSList &) const;
int WClsvDLi st::operator ==(const WClsvDList &) const;

Sample Program Using an Intrusive List

List Containers 237

WClsvSList<Type>, WCIsvDList<Type>

#i ncl ude <wclist.h>
#i ncl ude <i ostream h>

class int_ddata : public WCDLi nk {
publi c:
inline int_ddata() {};
inline int_ddata() {};
inline int _ddata(int datum) : info(datum) {};

i nt i nfo;

H
static void testl(void);

void data_isv_prt(int_ddata * data, void * str) {
cout << (char *)str << "[" << data->info << "]\n";

}
void main() {
try {
test1();
} catch(...) {
cout << "we caught an unexpected exception\n";
cout. flush();
}
void testl (void) {
WCI svDLi st <i nt _ddat a> l'ist;
i nt _ddat a datal(1);
i nt _ddata data2(2);
i nt _ddat a dat a3(3);
i nt _ddata dat a4(4);
i nt _ddat a dat a5(5);
|'i st.exceptions(WCExcept::check_all);
list.append(&data2);
|'i st.append(&data3);
list.append(&datad);
list.insert(&datal);
|'i st.append(&data5);
cout << "<intrusive double list for int_ddata>\n";
list.forAll(data_isv_prt, "");
data_isv_prt(list.find(3), "<the fourth elenment>");
data_isv_prt(list.get(2), "<the third element>");
data_isv_prt(list.get(), "<the first elenent>");
list.clear();
cout.flush();
}

238 List Containers

WCIsvSList<Type>::WClsvSList()

Synopsis. #i ncl ude <wclist. h>

public:

WCI svSLi st ();
Semantics: TheWCl svSLi st public member function creates an empty WCI svSLi st object.
Results: TheWCl svSLi st public member function produces aninitialized WCI svSLi st object.

See Also: ~WCI svSLi st

List Containers 239

WClsvSList<Type>::WClsvSList()

Synopsis. #i ncl ude <wclist. h>
private:
void WCl svSList(const WCIsvSList &);

Semantics: TheWCl svSLi st private member function is the copy constructor for the single linked list
class. Making a copy of thelist object would result in aerror condition, since intrusive lists
cannot share dataitems with other lists.

240 List Containers

WClsvSList<Type>::~WCIsvSList()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wclist. h>
public:
~WCl svSList();

The~WCl svSLi st public member function destroysthe WCI svSLi st object. If thelist
isnot empty and the not _enpt y exception is enabled, the exception isthrown. If the

not _enpt y exception is not enabled and the list is not empty, the list is cleared using the
cl ear member function. The call tothe ~WCI svSLi st public member functionis
inserted implicitly by the compiler at the point where the WCI svSLi st object goes out of
scope.

TheWCl svSLi st object is destroyed.

WCI svSLi st, cl ear, cl ear AndDest r oy, WCEXcept : : not _enpty

List Containers 241

WClsvDList<Type>::WCIsvDList()

Synopsis. #i ncl ude <wclist. h>
public:
WCI svDLi st () ;

Semantics: TheWCl svDLi st public member function creates an empty WCI svDLi st object.

Results: TheWCl svDLi st public member function produces aninitialized WCI svDLi st object.

See Also: ~WCI svDLi st

242 List Containers

WCIsvDList<Type>::WCIsvDList()

Synopsis. #i ncl ude <wclist. h>
private:
WCI svDLi st(const WCl svDList &);

Semantics: TheWCl svDLi st private member function isthe copy constructor for the double linked list
class. Making a copy of thelist object would result in aerror condition, since intrusive lists
cannot share dataitems with other lists.

List Containers 243

WClsvDList<Type>::~WCIsvDList()

Synopsis. #i ncl ude <wclist. h>
public:
~WCl svDLi st () ;

Semantics: The~WCl svDLi st public member function destroysthe WCI svDLi st object. If thelist
isnot empty and the not _enpt y exception is enabled, the exception isthrown. If the
not _enpt y exception is not enabled and the list is not empty, the list is cleared using the
cl ear member function. The call tothe ~WCI svDLi st public member functionis
inserted implicitly by the compiler at the point where the WCI svDLi st object goes out of
scope.

Results: TheWCl svDLi st object is destroyed.

SeeAlso: WCI svDLi st , cl ear, cl ear AndDest r oy, WCEXcept : : not _enpty

244 List Containers

WClsvSList<Type>::append(), WCIsvDList<Type>::append()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wclist. h>
public:
i nt append(Type *);

The append public member function is used to append the list element object to the end of
thelist. The address of (a pointer to) the list element object should be passed, not the value.
Since the linkage information is stored in the list element, it is not possible for the element to
be in more than one list, or in the same list more than once.

The passed list element should be constructed using the appropriate link class as a base.
WCSLi nk must be used as alist element base class for single linked lists, and WCDLi nk
must be used as a list element base class for double linked lists.

Thelist element is appended to the end of the list and a TRUE value (non-zero) is returned.

i nsert

List Containers 245

WClsvSList<Type>::clear(), WCIsvDList<Type>::clear()

Synopsis. #i ncl ude <wclist. h>
public:
void clear();

Semantics: Thecl ear public member function is used to clear the list object and set it to the state of
the object just after theinitial construction. The list object is not destroyed and re-created by
this operator, so the object destructor is not invoked. The list elements are not cleared. Any
listitems still in the list are lost unless pointed to by some pointer object in the program
code.

If any of thelist elements are not allocated with new (local variable or global list elements),
then the cl ear public member function must be used. When al list elements are allocated
with new, the cl ear AndDest or y member function should be used.

Results: Thecl ear public member function resets the list object to the state of the object
immediately after theinitial construction.

SeeAlso: ~WCl svSLi st, ~WCl svDLi st, cl ear AndDest r oy, get,operator =

246 List Containers

WClsvSList<Type>WCIsvDList<Type>::clearAndDestroy()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wclist. h>
public:
voi d cl ear AndDest roy();

Thecl ear AndDest r oy public member function is used to clear the list object and set it to
the state of the object just after the initial construction. Thelist object is not destroyed and
re-created by this operator, so the object destructor is not invoked. Thelink elements are
deleted before the list is re-initialized.

If any elementsin the list were not alocated by the new operator, the cl ear AndDest r oy
public member function must not be called. The cl ear AndDest r oy public member
function destroys each list element with the destructor for Type even if the list element was
created as an object derived from Type, unless Type hasapure virtua destructor.

Thecl ear AndDest r oy public member function resets the list object to the initial state of
the object immediately after theinitial construction and deletes the list elements.

cl ear, get

List Containers 247

WClsvSList<Type>::contains(), WCIsvDList<Type>::contains()

Synopsis. #i ncl ude <wclist. h>
public:
int contains(const Type *) const;

Semantics: Thecont ai ns public member function is used to determine if alist element object is
already contained in thelist. The address of (a pointer to) the list element object should be
passed, not the value. Each list element is compared to the passed element object to
determine if it has the same address. Note that the comparison is of the addresses of the
elements, not the contained values.

Results: Zero(0) isreturned if the passed list element object is not found in thelist. A non-zero result
isreturned if the element isfound in the list.

SeeAlso: find,index

248 List Containers

WClsvSList<Type>::entries(), WCIsvDList<Type>::entries()

Synopsis. #i ncl ude <wclist. h>
public:
int entries() const;

Semantics: Theent ri es public member function is used to determine the number of list elements
contained in the list object.

Results: The number of entries stored in thelist is returned, zero(0) is returned if there are no list
elements.

SeeAlso: i sEmpty

List Containers 249

WClsvSList<Type>::find(), WCIsvDList<Type>::find()

Synopsis. #i ncl ude <wclist. h>
public:
Type * find(int = 0) const;

Semantics: Thef i nd public member function returns a pointer to alist element in thelist object. The
list element is not removed from the list, so care must be taken not to delete the element
returned to you. The optional parameter specifies which element to locate, and defaultsto
thefirst element. Sincethe first element of thelist isthe zero’th element, the last element
will be the number of list entries minus one.

If thelist is empty and the enpt y _cont ai ner exception is enabled, the exception is
thrown. If thei ndex_r ange exception is enabled, the exception is thrown if the index
value is negative or is greater than the number of list entries minus one.

Results: A pointer to the selected list element or the closest list element isreturned. If theindex value
is negative, the closest list element isthe first element. Thelast element is the closest
element if the index value is greater than the number of list entries minusone. A value of
NULL(O) isreturned if there are no elementsin the list.

SeeAlso: findLast,get,index,isEnpty, WCExcept : : enpt y_cont ai ner,
WCExcept : : i ndex_range

250 List Containers

WClsvSList<Type>::findLast(), WCIsvDList<Type>::findLast()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wclist. h>
public:
Type * findLast() const;

Thef i ndLast public member function returns a pointer to the last list element in the list
object. Thelist element is not removed from the list, so care must be taken not to delete the
element returned to you.

If thelist is empty, one of two exceptions can be thrown. If the enpt y_cont ai ner
exception isenabled, itisthrown. The i ndex _r ange exception isthrown if it is enabled
and theenpt y _cont ai ner exception is not enabled.

A pointer to the last list element isreturned. A value of NULL(0) isreturned if there are no
elementsin thelist.

find, get,i seEnpty, WCExcept : : enpty _cont ai ner,
WCExcept : : i ndex_range

List Containers 251

WClsvSList<Type>::forAll(), WCIsvDList<Type>::forAll()

Synopsis:

Semantics:

See Also:

#i ncl ude <wclist. h>
public:
void forAll(void (*fn)(Type *, void *), void *);

Thef or Al | public member function is used to cause the function fn to be invoked for each
list element. The fn function should have the prototype

void (*fn)(Type *, void *)

Thefirst parameter of fn shall accept a pointer to the list element currently active. The
second argument passed to fn is the second argument of the f or Al | function. Thisalowsa
callback function to be defined which can accept data appropriate for the point at which the
forAl |l functionisinvoked.

WCI svConst SLi stlter, WCI svConst DLi stlter, WCI svSLi stlter,
WCl svDLi stlter

252 List Containers

WClsvSList<Type>::get(), WCIsvDLIist<Type>::get()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wclist. h>
public:
Type * get(int = 0);

Theget public member function returns a pointer to alist element in the list object. Thelist
element is also removed from thelist. The optional parameter specifies which element to
remove, and defaults to the first element. Sincethefirst element of thelist isthe zero'th
element, the last element will be the number of list entries minus one.

If thelist is empty and the enpt y _cont ai ner exception is enabled, the exception is
thrown. If thei ndex_r ange exception trap is enabled, the exception is thrown if the
index value is negative or is greater than the number of list entries minus one.

A pointer to the selected list element or the closest list element is removed and returned. |If
theindex valueis negative, the closest list element isthefirst element. Thelast element is
the closest element if the index value is greater than the number of list entries minus one. A
value of NULL(0) isreturned if there are no elementsin the list.

cl ear, cl ear AndDest r oy, fi nd, i ndex, WCExcept : : enpt y_cont ai ner,
WCExcept : : i ndex_r ange

List Containers 253

WClsvSList<Type>::index(), WCIsvDList<Type>::index()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wclist. h>
public:
int index(const Type *) const;

Thei ndex public member function is used to determine the index of the first list element
equivalent to the passed element. The address of (a pointer to) the list element object should
be passed, not the value. Each list element is compared to the passed element object to
determine if it has the same address. Note that the comparison is of the addresses of the
elements, not the contained values.

Theindex of the first element equivalent to the passed element isreturned. |If the passed
element is not in the list, negative one (-1) is returned.

contai ns, find, get

254 List Containers

WCIsvSList<Type>::index(), WCIsvDList<Type>::index()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wclist. h>

public:

int index(int (*test_fn)(const Type *, void *),
void *) const;

Thei ndex public member function is used to determine the index of thefirst list element
for which the supplied test_fn function returnstrue. Thetest fn function must have the
prototype:

int (*test _fn)(const Type *, void *);

Each list element is passed in turn to the test_fn function as the first argument. The second
parameter passed is the second argument of the i ndex function. Thisalowsthetest fn
callback function to accept data appropriate for the point at which the i ndex functionis
invoked. The supplied test_fn shall return a TRUE (non-zero) value when the index of the
passed element isdesired. Otherwise, a FAL SE (zero) value shall be returned.

Theindex of thefirst list element for which the test_fn function returns non-zero is returned.
If the test_fn function returns zero for al list elements, negative one (-1) is returned.

cont ai ns, find, get

List Containers 255

WClsvSList<Type>::insert(), WCIsvDList<Type>::insert()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wclist. h>
public:
int insert(Type *);

Thei nsert public member function is used to insert the list element object to the
beginning of the list. The address of (a pointer to) the list element object should be passed,
not the value. Since the linkage information is stored in the list element, it is not possible for
the element to be in more than one list, or in the same list more than once.

The passed list element should be constructed using the appropriate link class as a base.
WCSLi nk must be used as alist element base class for single linked lists, and WCDLi nk
must be used as a list element base class for double linked lists.

Thelist element isinserted as the first element of the list and a TRUE value (non-zero) is
returned.

append

256 List Containers

WCIsvSList<Type>::isEmpty(), WCIsvDList<Type>::isEmpty()

Synopsis. #i ncl ude <wclist. h>
public:
int iseEnpty() const;

Semantics: Thei sEnpt y public member function is used to determineif alist object has any list
elements contained in it.

Results: A TRUE value (non-zero) isreturned if the list object does not have any list elements
contained within it. A FALSE (zero) result isreturned if the list contains at |east one
element.

See Also; entries

List Containers 257

WClsvSList<Type>::operator =(), WCIsvDList<Type>::operator =()

Synopsis. #i ncl ude <wclist. h>
private:
WCl svSLi st & WClI svSLi st::operator =(const WClsvSList &);
WCl svDLi st & WCl svDLi st::operator =(const WClsvDList &);

Semantics: Theoper at or = private member function is the assignment operator for the class. Since

making a copy of the list object would result in a error condition, it is made inaccessible by
making it a private operator.

258 List Containers

WClsvSList<Type>::operator ==(), WCIsvDList<Type>:.operator ==()

Synopsis:

Semantics:

Results:

#i ncl ude <wclist. h>

public:

int WClsvSLi st::operator ==(const WClsvSList &) const;
int WClsvDLi st::operator ==(const WCl svDList &) const;

Theoper at or == public member function is the equivalence operator for the
WCI svSLi st <Type> and WCI svDLi st <Type> classes. Two list objects are equivalent
if they are the same object and share the same address.

A TRUE (non-zero) value isreturned if the left hand side object and the right hand side
objects are the same object. A FALSE (zero) valueis returned otherwise.

List Containers 259

WCPtrSList<Type>, WCPtrDList<Type>

Declared: wclist.h

The WCPt r SLi st <Type> and WCPt r DLi st <Type> classes are the templated classes
used to create objects which are single or double linked lists.

In the description of each member function, the text Type isused to indicate the type value
specified as the template parameter. The pointers stored in the list point to values of type
Type.

The WCEXcept classisabase class of the WCPt r SLi st <Type> and

WCPt r DLi st <Type> classes and providesthe except i ons member function. This
member function controls the exceptions which can be thrown by the

WCPt r SLi st <Type> and WCPt r DLi st <Type> objects. No exceptions are enabled
unless they are set by the except i ons member function.

Requirements of Type
The WCPt r SLi st <Type> and WCPt r DLi st <Type> classesrequires Type to have:

(2) an equivalence operator with constant parameters
Type::operator ==(const Type &) const

Public Member Functions
The following member functions are declared in the public interface:

WCPt r SLi st () ;

WCPtrSList(void * (*)(sizet), void (*)(void *, size t));
WCPt r SLi st (const WCPtrSList &);

~WCPt r SLi st () ;

WCPt r DLi st () ;

WCPt rDList(void * (*)(size_t), void (*)(void *, size_t));
WCPt r DLi st (const WCPtrDList &);

~WCPt r DLi st () ;

i nt append(Type *);

void clear();

voi d cl ear AndDest roy();

int contains(const Type *) const;

int entries() const;

Type * find(int = 0) const;

Type * findLast() const;

void forAll(void (*)(Type *, void *), void *) const;

Type * get(int =0);

int index(const Type *) const;

int insert(Type *);

int isEnpty() const;

260 List Containers

WCPtrSList<Type>, WCPtrDList<Type>

Public Member Operators
The following member operators are declared in the public interface:

WCPt r SLi st & WCPtr SLi st::operator =(const WCPtrSList &);
WCPt r DLi st & WCPt rDLi st:: operator =(const WCPtrDList &);
int WCPtrSList::operator ==(const WCPtrSList &) const;
int WCPtrDLi st::operator ==(const WCPtrDList &) const;

Sample Program Using a Pointer List

#i ncl ude <wclist. h>
#i ncl ude <i ostream h>

static void testl(void);

void data ptr_prt(int * data, void * str) {
cout << (char *)str << "[" << *data << "]\n";

}
voi d main() {
try {
testl1();
} catch(...) {
cout << "we caught an unexpected exception\n";
cout. flush();
}
void testl (void) {
WCPt r DLi st <i nt > l'ist;
i nt datal(1);
int data2(2);
int dat a3(3);
int dat a4(4);
int dat a5(5);
list.append(&data2);
|'ist.append(&data3);
list.append(&datad);
list.insert(&datal);
l'ist.append(&data5);
cout << "<pointer double list for int>\n";
list.forAll(data_ptr _prt, "");
data_ptr_prt(list.find(3), "<the fourth elenment>");
data ptr _prt(list.get(2), "<the third element>");
data_ptr_prt(list.get(), "<the first elenent>");
list.clear();
cout.flush();
}

List Containers 261

WCPtrSList<Type>::WCPtrSList()

Synopsis. #i ncl ude <wclist. h>
public:
WCPt r SLi st () ;

Semantics: TheWCPt r SLi st public member function creates an empty WCPt r SLi st object.
Results: The WCPt r SLi st public member function produces aninitialized WCPt r SLi st object.

SeeAlso; WCPtr SLi st, ~WCPt r SLi st

262 List Containers

WCPtrSList<Type>::WCPtrSList()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wclist. h>

public:

WCPt rSList(void *(*allocator)(size_t),
void (*deal locator)(void *, size_t));

TheWCPt r SLi st public member function creates an empty WCPt r SLi st <Type> object.
The allocator function is registered to perform all memory allocations of the list elements,
and the deallocator function to perform all freeing of the list elements’ memory. These
functions provide the ability to control how the allocation and freeing of memory is
performed, allowing for more efficient memory handling than the general purpose global
operator new() and oper at or del et e() canprovide. Memory management
optimizations may potentially be made through the allocator and deallocator functions, but
are not recommended before managing memory is understood and determined to be worth
while.

The allocator function shall return a pointer to allocated memory of size at least the
argument, or zero(0) if the allocation cannot be performed. Initialization of the memory
returned is performed by the WCPt r SLi st <Type> class.

The WCPt r SLi st <Type> class calls the deallocator function only on memory allocated
by the allocator function. The deallocator shall free the memory pointed to by the first
argument which is of size the second argument. The size passed to the deallocator function
is guaranteed to be the same size passed to the allocator function when the memory was
allocated.

The allocator and deallocator functions may assume that for alist object instance, the
allocator is aways called with the same first argument (the size of the memory to be
allocated). The WCVal SLi st |t enfSi ze(Type) macro returns the size of the elements
which are allocated by the allocator function.

The WCPt r SLi st public member function creates an initialized WCPt r SLi st <Type>
object and registers the allocator and deallocator functions.

WCPt r SLi st , ~WCPt r SLi st

List Containers 263

WCPtrSList<Type>::WCPtrSList()

Synopsis. #i ncl ude <wclist. h>
public:
void WCPtrSList(const WCPtrSList &);

Semantics: TheWCPt r SLi st public member function is the copy constructor for the single linked list
class. All of the list elements are copied to the new list, as well as the exception trap states,
and any registered allocator and deallocator functions.

If al of the elements cannot be copied and the out _of _nmenory isenabled in thelist being
copied, the exception isthrown. The new list is created in avalid state, even if al of thelist
elements could not be copied.

Results: TheWCPt r SLi st public member function produces a copy of thelist.

SeeAlso: WCPtr SLi st, ~WCPtr SLi st , cl ear, WCExcept : : out _of _nmenory

264 List Containers

WCPtrSList<Type>::~WCPtrSList()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wclist. h>
public:
~WCPt r SLi st () ;

The~WCPt r SLi st public member function destroysthe WCPt r SLi st object. If thelist
isnot empty and the not _enpt y exception is enabled, the exception isthrown. If the

not _enpt y exception is not enabled and the list is not empty, the list is cleared using the
cl ear member function. The call to the ~WCPt r SLi st public member functionis
inserted implicitly by the compiler at the point where the WCPt r SLi st object goes out of
scope.

The WCPt r SLi st object is destroyed.

WCPt r SLi st , cl ear, cl ear AndDest r oy, WCEXcept : : not _enpty

List Containers 265

WCPtrDList<Type>::WCPtrDList()

Synopsis. #i ncl ude <wclist. h>
public:
WCPt r DLi st () ;

Semantics: TheWCPt r DLi st public member function creates an empty WCPt r DLi st object.
Results: The WCPt r DLi st public member function produces aninitialized WCPt r DLi st object.

SeeAlso: WCPtr DLi st, ~WCPt r DLi st

266 List Containers

WCPtrDList<Type>::WCPtrDList()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wclist. h>

public:

WCPt rDLi st(void *(*allocator)(size_t),
void (*deal locator)(void *, size_t));

TheWCPt r DLi st public member function creates an empty WCPt r DLi st <Type> object.
The allocator function is registered to perform all memory allocations of the list elements,
and the deallocator function to perform all freeing of the list elements’ memory. These
functions provide the ability to control how the allocation and freeing of memory is
performed, allowing for more efficient memory handling than the general purpose global
operator new() and oper at or del et e() canprovide. Memory management
optimizations may potentially be made through the allocator and deallocator functions, but
are not recommended before managing memory is understood and determined to be worth
while.

The allocator function shall return a pointer to allocated memory of size at least the
argument, or zero(0) if the allocation cannot be performed. Initialization of the memory
returned is performed by the WCPt r DLi st <Type> class.

The WCPt r DLi st <Type> class calls the deallocator function only on memory allocated
by the allocator function. The deallocator shall free the memory pointed to by the first
argument which is of size the second argument. The size passed to the deallocator function
is guaranteed to be the same size passed to the allocator function when the memory was
allocated.

The allocator and deallocator functions may assume that for alist object instance, the
allocator is aways called with the same first argument (the size of the memory to be
allocated). The WCVal DLi st |t entSi ze(Type) macro returns the size of the elements
which are allocated by the allocator function.

The WCPt r DLi st public member function creates an initialized WCPt r DLi st <Type>
object and registers the allocator and deallocator functions.

WCPt r DLi st , ~WCPt r DLi st

List Containers 267

WCPtrDList<Type>::WCPtrDList()

Synopsis. #i ncl ude <wclist. h>
public:
WCPt r DLi st (const WCPtrDList &);

Semantics: The WCPt r DLi st public member function isthe copy constructor for the double linked list
class. All of the list elements are copied to the new list, as well as the exception trap states,
and any registered allocator and deallocator functions.

If al of the elements cannot be copied and the out _of _nmenory isenabled in thelist being
copied, the exception isthrown. The new list is created in avalid state, even if al of thelist
elements could not be copied.

Results: TheWCPt r DLi st public member function produces a copy of thelist.

SeeAlso: WCPtrDLi st, ~WCPt r DLi st , cl ear, WCExcept : : out _of _nmenory

268 List Containers

WCPtrDList<Type>::~WCPtrDList()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wclist. h>
public:
~WCPt r DLi st () ;

The ~WCPt r DLi st public member function destroysthe WCPt r DLi st object. If thelist
isnot empty and the not _enpt y exception is enabled, the exception isthrown. If the

not _enpt y exception is not enabled and the list is not empty, the list is cleared using the
cl ear member function. The call to the ~WCPt r DLi st public member functionis
inserted implicitly by the compiler at the point where the WCPt r DLi st object goes out of
scope.

The WCPt r DLi st object is destroyed.

WCPt r DLi st , cl ear, cl ear AndDest r oy, WCEXcept : : not _enpty

List Containers 269

WCPtrSList<Type>::append(), WCPtrDList<Type>::append()

Synopsis. #i ncl ude <wclist. h>
public:
i nt append(Type *);
Semantics: Theappend public member function is used to append the data to the end of thelist.

If theout _of _nmenory exception is enabled and the append fails, the exception is thrown.

Results: The data element is appended to the end of thelist. A TRUE value (non-zero) isreturned if
the append is successful. A FALSE (zero) result isreturned if the append fails.

SeeAlso: insert, WCExcept: : out _of _nenory

270 List Containers

WCPtrSList<Type>::clear(), WCPtrDList<Type>::clear()

Synopsis. #i ncl ude <wclist. h>
public:
void clear();

Semantics: Thecl ear public member function is used to clear the list object and set it to the state of
the object just after theinitial construction. The list object is not destroyed and re-created by
this operator, so the abject destructor is not invoked.

Results: Thecl ear public member function resets the list object to the state of the object
immediately after theinitial construction.

SeeAlso: ~WCPt r SLi st, ~WCPt r DLi st, cl ear AndDest r oy, get,operator =

List Containers 271

WCPtrSList<Type>WCPtrDList<Type>::clearAndDestroy()

Synopsis. #i ncl ude <wclist. h>
public:
voi d cl ear AndDest roy();

Semantics: Thecl ear AndDest r oy public member function is used to clear the list object and set it to
the state of the object just after the initial construction. Thelist object is not destroyed and
re-created by this operator, so the object destructor is not invoked. Beforethe list object is
re-initialized, the the values pointed to by the list elements are deleted.

Results: Thecl ear AndDest r oy public member function resets the list object to the initial state of
the object immediately after theinitial construction and deletes the list elements.

SeeAlso: cl ear, get

272 List Containers

WCPtrSList<Type>::contains(), WCPtrDList<Type>::contains()

Synopsis. #i ncl ude <wclist. h>
public:
int contains(const Type *) const;

Semantics: Thecont ai ns public member function is used to determine if alist element object is
already contained in thelist. Each list element is compared to the passed element using
Type’ s operat or ==todetermineif the passed element is contained in thelist. Note
that the comparison is of the objects pointed to.

Results: Zero(0) isreturned if the passed list element object is not found in thelist. A non-zero result
isreturned if the element isfound in thelist.

SeeAlso: find,index

List Containers 273

WCPtrSList<Type>::entries(), WCPtrDList<Type>::entries()

Synopsis. #i ncl ude <wclist. h>
public:
int entries() const;

Semantics: Theent ri es public member function is used to determine the number of list elements
contained in the list object.

Results: The number of entries stored in thelist is returned, zero(0) is returned if there are no list
elements.

SeeAlso: i sEmpty

274 List Containers

WCPtrSList<Type>::find(), WCPtrDList<Type>::find()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wclist. h>
public:
Type * find(int = 0) const;

Thef i nd public member function returns the value of alist element in thelist object. The
optional parameter specifies which element to locate, and defaultsto the first element. Since
the first element of the list isthe zero'th element, the last element will be the number of list
entries minus one.

If thelist is empty and the enpt y _cont ai ner exception is enabled, the exception is
thrown. If thei ndex_r ange exception is enabled, the exception isthrown if the index
value is negative or is greater than the number of list entries minus one.

The value of the selected list element or the closest element isreturned. If theindex valueis
negative, the closest list element isthe first element. The last element is the closest element
if theindex valueis greater than the number of list entries minus one. An uninitialized
pointer isreturned if there are no elementsin the list.

findLast, get,index,i sEnpty, WCExcept : : enpt y_cont ai ner,
WCExcept : : i ndex_r ange

List Containers 275

WCPtrSList<Type>::findLast(), WCPtrDList<Type>::findLast()

Synopsis. #i ncl ude <wclist. h>
public:
Type * findLast() const;

Semantics: Thefi ndLast public member function returns the value of the last list element in the list
object.

If thelist is empty, one of two exceptions can be thrown. If the enpt y _cont ai ner
exception isenabled, itisthrown. The i ndex _r ange exception isthrown if it is enabled
and theenpt y _cont ai ner exception is not enabled.

Results: The value of thelast list element isreturned. An uninitialized pointer isreturned if there are
no elementsin thelist.

SeeAlso: find,get,isEnpty, WCExcept: : enpty _cont ai ner,
WCEXxcept : : i ndex_r ange

276 List Containers

WCPtrSList<Type>::forAll(), WCPtrDList<Type>::forAll()

Synopsis:

Semantics:

See Also:

#i ncl ude <wclist. h>
public:
void forAll(void (*)(Type *, void *), void *) const;

Thef or Al | public member function is used to cause the function fn to be invoked for each
list element. The fn function should have the prototype

void (*fn)(Type *, void *)

Thefirst parameter of fn shall accept the value of the list element currently active. The
second argument passed to fn is the second argument of the f or Al | function. Thisalowsa
callback function to be defined which can accept data appropriate for the point at which the
forAl |l functionisinvoked.

WCPt r Const SLi stlter, WCPtr Const DLi stlter, WCPtr SLi st l ter,
WCPtrDLi stlter

List Containers 277

WCPtrSList<Type>::get(), WCPtrDList<Type>::get()

Synopsis. #i ncl ude <wclist. h>
public:
Type * get(int = 0);

Semantics: Theget public member function returns the value of the list element in the list object. The
list element is also removed from the list. The optional parameter specifies which element to
remove, and defaults to the first element. Since the first element of thelist isthe zero'th
element, the last element will be the number of list entries minus one.

If thelist is empty and the enpt y _cont ai ner exception is enabled, the exception is
thrown. If thei ndex_r ange exception trap is enabled, the exception is thrown if the
index value is negative or is greater than the number of list entries minus one.

Results: The value of the selected list element or the closest element is removed and returned. If the
index value is negative, the closest list element isthe first element. The last element isthe
closest element if the index value is greater than the number of list entriesminus one. An
uninitialized pointer is returned if there are no elementsin thelist.

SeeAlso: cl ear, cl ear AndDest roy, fi nd, i ndex, WCExcept : : enpty_cont ai ner,
WCExcept : : i ndex_r ange

278 List Containers

WCPtrSList<Type>::index(), WCPtrDList<Type>::index()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wclist. h>
public:
int index(const Type *) const;

Thei ndex public member function is used to determine the index of the first list element
equivalent to the passed element. Each list element is compared to the passed element using
Type’ s operat or == until the passed element isfound, or all list elements have been
checked. Note that the comparison is of the objects pointed to.

Theindex of the first element equivalent to the passed element isreturned. |If the passed
element is not in the list, negative one (-1) is returned.

contai ns, find,get

List Containers 279

WCPtrSList<Type>::insert(), WCPtrDList<Type>::insert()

Synopsis. #i ncl ude <wclist. h>
public:
int insert(Type *);
Semantics: Thei nsert public member function is used to insert the data as the first element of thelist.

If theout _of _menory exception is enabled and the insert fails, the exception is thrown.

Results: The data element isinserted into the beginning of thelist. A TRUE vaue (hon-zero) is
returned if the insert is successful. A FALSE (zero) result isreturned if the insert fails.

SeeAlso: append, WCExcept : : out _of _nenory

280 List Containers

WCPtrSList<Type>::isEmpty(), WCPtrDList<Type>::iSEmpty()

Synopsis. #i ncl ude <wclist. h>
public:
int iseEnpty() const;

Semantics: Thei sEnpt y public member function is used to determineif alist object has any list
elements contained in it.

Results: A TRUE value (non-zero) isreturned if the list object does not have any list elements
contained within it. A FALSE (zero) result isreturned if the list contains at |east one
element.

See Also; entries

List Containers 281

WCPtrSList<Type>::operator =(), WCPtrDList<Type>::operator =()

Synopsis. #i ncl ude <wclist. h>
public:
WCPt r SLi st & WCPtr SLi st::operator =(const WCPtrSList &);
WCPt r DLi st & WCPt rDLi st::operator =(const WCPtrDList &);

Semantics: Theoper at or = public member function is the assignment operator for the class. The left
hand side of the assignment isfirst cleared with the cl ear member function. All elements
in the right hand side list are then copied, as well as the exception trap states, and any
registered allocator and deallocator functions.

If al of the elements cannot be copied and the out _of _nenory isenabled in the right
hand side list, the exception isthrown. The new list is created in avalid state, even if all of
the list elements could not be copied.

Results: Theoper at or = public member function assigns the right hand side to the left hand side
and returns areference to the left hand side.

SeeAlso: WCPtr SLi st, WCPt r DLi st , cl ear, WCExcept : : out _of _nenory

282 List Containers

WCPtrSList<Type>::operator ==(), WCPtrDList<Type>::operator ==()

Synopsis:

Semantics:

Results:

#i ncl ude <wclist. h>

public:

int WCPtrSList::operator ==(const WCPtrSList &) const;
int WCPtrDLi st::operator ==(const WCPtrDList &) const;

Theoper at or == public member function is the equivalence operator for the
WCPt r SLi st <Type> and WCPt r DLi st <Type> classes. Two list objects are equivalent
if they are the same object and share the same address.

A TRUE (non-zero) value isreturned if the left hand side object and the right hand side
objects are the same object. A FALSE (zero) valueis returned otherwise.

List Containers 283

WCSLink

Declared: wcl com h

Derived by: WCDLi nk
The WCSLi nk classisthe building block for all of the list classes. It providesthelink that is
used to traverse the list elements. The double link classes use the WCSLi nk classto
implement both links. Since no user datais stored directly with it, the WCSLi nk class
should only be used as a base class to derive a user defined class.

When creating asingle linked intrusive list, the WCSLi nk classis used to derive the user
defined class that holds the data to be inserted into the list.

Thewcl com h header fileisincluded by the wel i st . h header file. Thereisno needto
explicitly include the wcl com h header file unlessthe wel i st . h header fileis not
included. No errorswill result if it isincluded unnecessarily.

Note that the destructor is non-virtual so that list elements are of minimum size. Objects
created as a class derived from the WCSLi nk class, but destroyed while typed as a

WCSLi nk object will not invoke the destructor of the derived class.

Public Member Functions

The following public member functions are declared:

WCSLi nk() ;
~WCSLi nk();

See Also: WCDLi nk

284 List Containers

WCSLink::WCSLink()

Synopsis. #i ncl ude <wcl com h>
public:
WCSLi nk() ;
Semantics: The public WCSLi nk constructor creates an WCSLi nk object. The public WCSLi nk

constructor is used implicitly by the compiler when it generates a constructor for a derived
class.

Results: The public WCSLi nk constructor produces an initialized WCSLi nk object.

See Also: ~WCSLi nk

List Containers 285

WCSLink::~WCSLink()

Synopsis. #i ncl ude <wcl com h>
public:
~WCSLi nk();

Semantics: The public ~WWCSLi nk destructor does not do anything explicit. The call to the public
~WCSLi nk destructor isinserted implicitly by the compiler at the point where the object
derived from WCSLink goes out of scope.

Results: The object derived from WCSLink is destroyed.

SeeAlso: WCSLi nk

286 List Containers

WCValSList<Type>, WCValDList<Type>

Declared:

welist.h

TheWCVal SLi st <Type> and WCVal DLi st <Type> classes are the templated classes
used to create objects which are single or double linked lists. Values are copied into thelist,
which could be undesirable if the stored objects are complicated and copying is expensive.
Value lists should not be used to store objects of abase classif any derived types of different
sizeswould be stored in the list, or if the destructor for a derived class must be called.

In the description of each member function, the text Type isused to indicate the type value
specified as the template parameter. Ty pe isthe type of the values stored in the list.

The WCEXcept classisabase class of the WCVal SLi st <Type> and

WCVal DLi st <Type> classes and providesthe except i ons member function. This
member function controls the exceptions which can be thrown by the

WCVal SLi st <Type> and WCVal DLi st <Type> objects. No exceptions are enabled
unless they are set by the except i ons member function.

Requirements of Type

TheWCVal SLi st <Type> and WCVal DLi st <Type> classesrequires Type to have:
(1) adefault constructor (Type: : Type()).

(2) awell defined copy constructor (Type: : Type(const Type &)).

(3) an equivalence operator with constant parameters
Type::operator ==(const Type &) const

Public Member Functions

The following member functions are declared in the public interface:

WCVal SLi st () ;

WCVal SList(void * (*)(size_t), void (*)(void *, size_t));
WCVal SLi st(const WCVal SList &);

~WCVal SLi st ();

WCVal DLi st () ;

WCVal DList(void * (*)(size_t), void (*)(void *, size_t));
WCVal DLi st (const WCVal DLi st &);

~WCVal DLi st () ;

i nt append(const Type &);

void clear();

voi d cl ear AndDestroy();

int contains(const Type &) const;

int entries() const;

List Containers 287

WCValSList<Type>, WCValDList<Type>

Type find(int = 0) const;

Type findLast() const;

void forAll(void (*)(Type, void *), void *) const;
Type get(int =0);

int index(const Type &) const;

int insert(const Type &);

int isEnpty() const;

Public Member Operators

The following member operators are declared in the public interface:

WCVal SLi st & WCVal SLi st::operator =(const WCVal SList &);
WCVal DLi st & WCVal DLi st::operator =(const WCVal DList &);
i nt WCVal SLi st::operator ==(const WCVal SList &) const;

i nt WCVal DLi st::operator ==(const WCVal DList &) const;

Sample Program Using a Value List

288 List Containers

WCValSList<Type>, WCValDList<Type>

#i ncl ude <wclist.h>
#i ncl ude <i ostream h>

static void testl(void);

void data val _prt(int data, void * str) {
cout << (char *)str << "[" << data << "]\n";
}

void main() {
try {
test1();
} catch(...) {
cout << "we caught an unexpected exception\n";

}
cout. flush();
}

void testl (void) {
WCVal DLi st <i nt > list;

l'i st.append(
I'i st.append(
l'i st.append(

A WN

)
)
)

list.insert(1);
I'i st.append(;
cout << "<value double list for int>\n";

list.forAll(data_val _prt, "");

data_val prt(list.find(3), "<the fourth elenment>");
data_val _prt(list.get(2), "<the third element>");
data_val _prt(list.get(), "<the first element>");
list.clear();

cout. flush();

[¢)]

1

List Containers 289

WCValSList<Type>::WCValSList()

Synopsis. #i ncl ude <wclist. h>
public:
WCVal SLi st () ;

Semantics: TheWCVal SLi st public member function creates an empty WCVal SLi st object.
Results: TheWCVal SLi st public member function produces aninitialized WCVal SLi st object.

SeeAlso; WCVal SLi st, ~WCVal SLi st

290 List Containers

WCValSList<Type>::WCValSList()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wclist. h>

public:

WCVal SList(void *(*allocator)(size_t),
void (*deal locator)(void *, size_t));

TheWCVal SLi st public member function creates an empty WCVal SLi st <Type> object.
The allocator function is registered to perform all memory allocations of the list elements,
and the deallocator function to perform all freeing of the list elements’ memory. These
functions provide the ability to control how the allocation and freeing of memory is
performed, allowing for more efficient memory handling than the general purpose global
operator new() and oper at or del et e() canprovide. Memory management
optimizations may potentially be made through the allocator and deallocator functions, but
are not recommended before managing memory is understood and determined to be worth
while.

The allocator function shall return a pointer to allocated memory of size at least the
argument, or zero(0) if the allocation cannot be performed. Initialization of the memory
returned is performed by the WCVal SLi st <Type> class.

The WCVal SLi st <Type> class calls the deallocator function only on memory allocated
by the allocator function. The deallocator shall free the memory pointed to by the first
argument which is of size the second argument. The size passed to the deallocator function
is guaranteed to be the same size passed to the allocator function when the memory was
allocated.

The allocator and deallocator functions may assume that for alist object instance, the
allocator is aways called with the same first argument (the size of the memory to be
allocated). The WCVal SLi st |t enfSi ze(Type) macro returns the size of the elements
which are allocated by the allocator function.

TheWCVal SLi st public member function creates an initialized WCVal SLi st <Type>
object and registers the allocator and deallocator functions.

WCVal SLi st , ~WCVal SLi st

List Containers 291

WCValSList<Type>::WCValSList()

Synopsis. #i ncl ude <wclist. h>
public:
voi d WCVal SLi st(const WCVal SList &);

Semantics: TheWCVal SLi st public member function is the copy constructor for the single linked list
class. All of the list elements are copied to the new list, as well as the exception trap states,
and any registered allocator and deallocator functions. Type’ s copy constructor is
invoked to copy the values contained by the list elements.

If al of the elements cannot be copied and the out _of _nmenory isenabled in thelist being
copied, the exception isthrown. The new list is created in avalid state, even if al of thelist
elements could not be copied.

Results: TheWCVal SLi st public member function produces a copy of thelist.

SeeAlso: WCVal SLi st, ~WCVal SLi st , cl ear, WCExcept : : out _of _nmenory

292 List Containers

WCValSList<Type>::~WCValSList()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wclist. h>
public:
~WCVal SLi st ();

The~WCVal SLi st public member function destroysthe WCVal SLi st object. If thelist
isnot empty and the not _enpt y exception is enabled, the exception isthrown. If the

not _enpt y exception is not enabled and the list is not empty, the list is cleared using the
cl ear member function. The call to the ~WCVal SLi st public member functionis
inserted implicitly by the compiler at the point where the WCVal SLi st object goes out of
scope.

TheWCVal SLi st object is destroyed.

WCVal SLi st , cl ear, cl ear AndDest r oy, WCEXcept : : not _enpty

List Containers 293

WCValDList<Type>::WCValDList()

Synopsis. #i ncl ude <wclist. h>
public:
WCVal DLi st () ;

Semantics: TheWCVal DLi st public member function creates an empty WCVal DLi st object.
Results: TheWCVal DLi st public member function produces aninitialized WCVal DLi st object.

SeeAlso; WCVal DLi st, ~WCVal DLi st

294 List Containers

WCValDList<Type>::WCValDList()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wclist. h>

public:

WCVal DLi st(void *(*allocator)(size_t),
void (*deal locator)(void *, size_t));

TheWCVal DLi st public member function creates an empty WCVal DLi st <Type> object.
The allocator function is registered to perform all memory allocations of the list elements,
and the deallocator function to perform all freeing of the list elements’ memory. These
functions provide the ability to control how the allocation and freeing of memory is
performed, allowing for more efficient memory handling than the general purpose global
operator new() and oper at or del et e() canprovide. Memory management
optimizations may potentially be made through the allocator and deallocator functions, but
are not recommended before managing memory is understood and determined to be worth
while.

The allocator function shall return a pointer to allocated memory of size at least the
argument, or zero(0) if the allocation cannot be performed. Initialization of the memory
returned is performed by the WCVal DLi st <Type> class.

The WCVal DLi st <Type> class calls the deallocator function only on memory allocated
by the allocator function. The deallocator shall free the memory pointed to by the first
argument which is of size the second argument. The size passed to the deallocator function
is guaranteed to be the same size passed to the allocator function when the memory was
allocated.

The allocator and deallocator functions may assume that for alist object instance, the
allocator is aways called with the same first argument (the size of the memory to be
allocated). The WCVal DLi st |t entSi ze(Type) macro returns the size of the elements
which are allocated by the allocator function.

TheWCVal DLi st public member function creates an initialized WCVal DLi st <Type>
object and registers the allocator and deallocator functions.

WCVal DLi st , ~WCVal DLi st

List Containers 295

WCValDList<Type>::WCValDList()

Synopsis. #i ncl ude <wclist. h>
public:
WCVal DLi st(const WCVal DList &);

Semantics: TheWCVal DLi st public member function isthe copy constructor for the double linked list
class. All of the list elements are copied to the new list, as well as the exception trap states,
and any registered allocator and deallocator functions. Type’ s copy constructor is
invoked to copy the values contained by the list elements.

If al of the elements cannot be copied and the out _of _nmenory isenabled in thelist being
copied, the exception isthrown. The new list is created in avalid state, even if al of thelist
elements could not be copied.

Results: TheWCVal DLi st public member function produces a copy of thelist.

SeeAlso: WCVal DLi st, ~WCVal DLi st , cl ear, WCExcept : : out _of _nmenory

296 List Containers

WCValDList<Type>::~WCValDList()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wclist. h>
public:
~WCVal DLi st () ;

The~WCVal DLi st public member function destroysthe WCVal DLi st object. If thelist
isnot empty and the not _enpt y exception is enabled, the exception isthrown. If the

not _enpt y exception is not enabled and the list is not empty, the list is cleared using the
cl ear member function. The call to the ~WCVal DLi st public member functionis
inserted implicitly by the compiler at the point where the WCVal DLi st object goes out of
scope.

TheWCVal DLi st object is destroyed.

WCVal DLi st , cl ear, cl ear AndDest r oy, WCEXcept : : not _enpty

List Containers 297

WCValSList<Type>::append(), WCValDList<Type>::append()

Synopsis. #i ncl ude <wclist. h>
public:
i nt append(const Type &);

Semantics: Theappend public member function is used to append the datato the end of thelist. The
data stored in thelist is a copy of the data passed as a parameter.

If the out _of _nmenory exception is enabled and the append fails, the exception is thrown.

Results: The data element is appended to the end of thelist. A TRUE value (non-zero) isreturned if
the append is successful. A FALSE (zero) result isreturned if the append fails.

SeeAlso: insert, WCExcept: : out _of _nenory

298 List Containers

WCValSList<Type>::clear(), WCValDList<Type>::clear()

Synopsis. #i ncl ude <wclist. h>
public:
void clear();

Semantics: Thecl ear public member function is used to clear the list object and set it to the state of
the object just after theinitial construction. The list object is not destroyed and re-created by
this operator, so the abject destructor is not invoked.

The cl ear public member function has the same sematics asthe cl ear AndDest r oy
member function.

Results: Thecl ear public member function resets the list object to the state of the object
immediately after theinitial construction.

SeeAlso: ~WCVval SLi st, ~\WCVal DLi st, cl ear AndDest r oy, get, operator =

List Containers 299

WCValSList<Type>WCValDList<Type>::clearAndDestroy()

Synopsis. #i ncl ude <wclist. h>
public:
voi d cl ear AndDest roy();

Semantics: Thecl ear AndDest r oy public member function is used to clear the list object and set it to
the state of the object just after the initial construction. Thelist object is not destroyed and
re-created by this operator, so the object destructor is not invoked.

Before the list object is re-initialized, the delete operator is called for each list element.

Results: Thecl ear AndDest r oy public member function resets the list object to the initial state of
the object immediately after theinitial construction.

SeeAlso: cl ear, get

300 List Containers

WCValSList<Type>::contains(), WCValDList<Type>::contains()

Synopsis. #i ncl ude <wclist. h>
public:
int contains(const Type &) const;

Semantics: Thecont ai ns public member function is used to determine if alist element object is
already contained in thelist. Each list element is compared to the passed element using
Type’ s operat or ==todetermineif the passed element is contained in thelist.

Results: Zero(0) isreturned if the passed list element object is not found in thelist. A non-zero result
isreturned if the element isfound in thelist.

SeeAlso: find,index

List Containers 301

WCValSList<Type>::entries(), WCValDList<Type>::entries()

Synopsis. #i ncl ude <wclist. h>
public:
int entries() const;

Semantics: Theent ri es public member function is used to determine the number of list elements
contained in the list object.

Results: The number of entries stored in thelist is returned, zero(0) is returned if there are no list
elements.

SeeAlso: i sEmpty

302 List Containers

WCValSList<Type>::find(), WCValDList<Type>::find()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wclist. h>
public:
Type find(int = 0) const;

Thef i nd public member function returns the value of alist element in thelist object. The
optional parameter specifies which element to locate, and defaultsto the first element. Since
the first element of the list isthe zero'th element, the last element will be the number of list
entries minus one.

If thelist is empty and the enpt y _cont ai ner exception is enabled, the exception is
thrown. If thei ndex_r ange exception is enabled, the exception isthrown if the index
value is negative or is greater than the number of list entries minus one.

The value of the selected list element or the closest element isreturned. If theindex valueis
negative, the closest list element isthe first element. The last element is the closest element
if theindex valueis greater than the number of list entries minus one. A default initialized
valueisreturned if there are no elementsin the list.

findLast, get,index,i sEnpty, WCExcept : : enpt y_cont ai ner,
WCExcept : : i ndex_r ange

List Containers 303

WCValSList<Type>::findLast(), WCValDList<Type>::findLast()

Synopsis. #i ncl ude <wclist. h>
public:
Type findLast() const;

Semantics: Thefi ndLast public member function returns the value of the last list element in the list
object.

If thelist is empty, one of two exceptions can be thrown. If the enpt y _cont ai ner
exception isenabled, itisthrown. The i ndex _r ange exception isthrown if it is enabled
and theenpt y _cont ai ner exception is not enabled.

Results: The value of the last list element isreturned. A default initialized value is returned if there
are no e ementsin thelist.

SeeAlso: find,get,isEnpty, WCExcept: : enpty _cont ai ner,
WCEXxcept : : i ndex_r ange

304 List Containers

WCValSList<Type>::forAll(), WCValDList<Type>::forAll()

Synopsis:

Semantics:

See Also:

#i ncl ude <wclist. h>
public:
void forAll(void (*)(Type, void *), void *) const;

Thef or Al | public member function is used to cause the function fn to be invoked for each
list element. The fn function should have the prototype

void (*fn)(Type, void *)

Thefirst parameter of fn shall accept the value of the list element currently active. The
second argument passed to fn is the second argument of the f or Al | function. Thisalowsa
callback function to be defined which can accept data appropriate for the point at which the
forAl |l functionisinvoked.

WCVal Const SLi stlter, WCVal Const DLi stlter, WCVal SLi st ter,
WCVal DLi stlter

List Containers 305

WCValSList<Type>::get(), WCValDList<Type>::get()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wclist. h>
public:
Type get(int =0);

Theget public member function returns the value of the list element in the list object. The
list element is also removed from the list. The optional parameter specifies which element to
remove, and defaults to the first element. Since the first element of thelist isthe zero'th
element, the last element will be the number of list entries minus one.

If thelist is empty and the enpt y _cont ai ner exception is enabled, the exception is
thrown. If thei ndex_r ange exception trap is enabled, the exception is thrown if the
index value is negative or is greater than the number of list entries minus one.

The value of the selected list element or the closest element is removed and returned. If the
index value is negative, the closest list element isthe first element. The last element isthe
closest element if the index value is greater than the number of list entries minus one. A
default initialized value is returned if there are no elementsin the list.

cl ear, cl ear AndDest r oy, fi nd, i ndex, WCExcept : : enpt y_cont ai ner,
WCExcept : : i ndex_r ange

306 List Containers

WCValSList<Type>::index(), WCValDList<Type>::index()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wclist. h>
public:
int index(const Type &) const;

Thei ndex public member function is used to determine the index of the first list element
equivalent to the passed element. Each list element is compared to the passed element using
Type’ s operat or == until the passed element isfound, or all list elements have been
checked.

Theindex of the first element equivalent to the passed element isreturned. |If the passed
element is not in the list, negative one (-1) is returned.

contai ns, find,get

List Containers 307

WCValSList<Type>::insert(), WCValDList<Type>::insert()

Synopsis. #i ncl ude <wclist. h>
public:
int insert(const Type &);

Semantics: Thei nsert public member function is used to insert the data as the first element of thelist.
The data stored in the list is a copy of the data passed as a parameter.

If the out _of _menory exception is enabled and the insert fails, the exception is thrown.

Results: The data element isinserted into the beginning of thelist. A TRUE vaue (hon-zero) is
returned if the insert is successful. A FALSE (zero) result isreturned if the insert fails.

SeeAlso: append, WCExcept : : out _of _nenory

308 List Containers

WCValSList<Type>::isEmpty(), WCValDList<Type>::isSEmpty()

Synopsis. #i ncl ude <wclist. h>
public:
int iseEnpty() const;

Semantics: Thei sEnpt y public member function is used to determineif alist object has any list
elements contained in it.

Results: A TRUE value (non-zero) isreturned if the list object does not have any list elements
contained within it. A FALSE (zero) result isreturned if the list contains at |east one
element.

See Also; entries

List Containers 309

WCValSList<Type>::operator =(), WCValDList<Type>::operator =()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wclist. h>

public:

WCVal SLi st & WCVal SLi st::operator =(const WCVal SList &);
WCVal DLi st & WCVal DLi st::operator =(const WCVal DList &);

Theoper at or = public member function is the assignment operator for the class. The left
hand side of the assignment isfirst cleared with the cl ear member function. All elements
in the right hand side list are then copied, as well as the exception trap states, and any
registered allocator and deallocator functions. Type’ s copy constructor isinvoked to copy
the values contained by the list elements.

If al of the elements cannot be copied and the out _of _nenory isenabled in theright
hand side list, the exception isthrown. The new list is created in avalid state, even if all of
the list elements could not be copied.

Theoper at or = public member function assigns the right hand side to the |eft hand side
and returns areference to the left hand side.

WCVal SLi st, WCVal DLi st , cl ear, WCExcept : : out _of _nmenory

310 List Containers

WCValSList<Type>::operator ==(), WCValDList<Type>:.operator ==()

Synopsis:

Semantics:

Results:

#i ncl ude <wclist. h>

public:

i nt WCVal SLi st::operator ==(const WCVal SList &) const;
i nt WCVal DLi st::operator ==(const WCVal DList &) const;

Theoper at or == public member function is the equivalence operator for the
WCVal SLi st <Type> and WCVal DLi st <Type> classes. Two list objects are equivalent
if they are the same object and share the same address.

A TRUE (non-zero) value isreturned if the left hand side object and the right hand side
objects are the same object. A FALSE (zero) valueis returned otherwise.

List Containers 311

WCValSList<Type>::operator ==(), WCValDList<Type>::operator ==()

312 List Containers

13 List Iterators

List iterators operate on single or double linked lists. They are used to step through alist one
or more elements at atime. The choice of which type of iterator to useis determined by the
list you wish to iterate over. For example, to iterate over a non-constant

WCI svDLi st <Type> object, usethe WCI svDLi st |t er <Type> class. A constant
WCVal SLi st <Type> object can be iterated using the WCVal Const SLi st |t er <Type>
class. Theiteratorswhich correspond to the single link list containers have some functionality
inhibited. If backward traversal is required, the double linked containers and corresponding
iterators must be used.

Like all WATCOM iterators, newly constructed and reset iterators are positioned before the
first element in the list. Thelist may be traversed one element at atime using the
pre-increment or call operator. An increment operation causing the iterator to be positioned
after the end of the list returns zero. Further increments will cause the undef _i t er
exception to be thrown, if it isenabled. Thisbehaviour allowsliststo be traversed simply
using awhile loop, and is demonstrated in the examples for the iterator classes.

The classes are presented in aphabetical order. The WCI t er Except class providesthe
common exception handling control interface for al of the iterators.

Since the iterator classes are all template classes, deriving most of the functionality from
common base classes was used. In thelisting of class member functions, those public member
functions which appear to be in the iterator class but are actually defined in the common base
classare identified as if they were explicitly specified in theiterator class.

List Iterators 313

WClsvConstSListlter<Type>, WCIsvConstDListlter<Type>

Declared: wclistit.h

TheWCl svConst SLi st |t er <Type>and WCl svConst DLi st | t er <Type> classes
are the templated classes used to create iterator objects for constant single and double linked
list objects. These classes may be used to iterate over non-constant lists, but the

WCl svDLi st | t er <Type>and WCI svSLi st | t er <Type> classes provide additional
functionality for only non-constant lists.

In the description of each member function, the text Type isused to indicate the list element
type specified as the template parameter.

TheWCl t er Except classisabase class of the WCI svConst SLi st |t er <Type>and
WCI svConst DLi st | t er <Type> classes and providesthe except i ons member
function. This member function controls the exceptions which can be thrown by the

WCI svConst SLi st I t er <Type>and WCl svConst DLi st |t er <Type> objects. No
exceptions are enabled unless they are set by the except i ons member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate for the
constant list iterator classes. Setting those functions as private members in the derived class
is the standard mechanism to prevent them from being invoked.

i nt append(Type *);
int insert(Type *);

Public Member Functions
The following member functions are declared in the public interface:

WCl svConst SListlter();

WCI svConst SLi stlter(const WC svSLi st<Type> &);

~WCl svConst SListlter();

WCl svConstDListlter();

WCl svConst DLi stlter(const WC svDLi st<Type> &);

~WCl svConst DLi stlter();

const WCl svSLi st <Type> *WCl svConst SLi st 1t er<Type>:: contai ner ()
const;

const WCl svDLi st <Type> *WCl svConst DLi st |t er<Type>:: contai ner ()
const;

Type * current() const;

void reset();

voi d WCl svConst SLi stlter<Type>::reset(const WC svSLi st <Type>
&);

314 List Iterators

WClsvConstSListlter<Type>, WClsvConstDListlter<Type>

voi d WCl svConst DLi stlter<Type>::reset(const WCl svDLi st <Type>
&);

Public Member Operators

The following member operators are declared in the public interface:
Type * operator ()();

Type * operator ++();

Type * operator +=(int);

In the iterators for double linked lists only:

Type * operator --();
Type * operator -=(int);

SeeAlso:. WCIsvSList::forAll, Wl svDList::forAll

List Iterators 315

WClsvConstSListlter<Type>::WClsvConstSListlter()

Synopsis: #include <wclistit. h>
public:
WCl svConst SListlter();

Semantics: TheWCl svConst SLi st | t er public member function is the default constructor for the
class and initializes the iterator with no list to operate on. The r eset member function
must be called to provide the iterator with alist to iterate over.

Results: TheWCl svConst SLi st | t er public member function creates an initialized
WCI svConst SLi st |t er object.

SeeAlso: WCl svConst SLi stlter, ~WCl svConst SLi stlter, reset

316 List Iterators

WClsvConstSListlter<Type>::WClsvConstSListlter()

Synopsis:

Semantics:

Results:

See Also;

#include <wclistit. h>
public:
WCl svConst SLi stlter(const WC svSLi st<Type> &);

The WCl svConst SLi st | t er public member function is a constructor for the class. The

value passed as a parameter isa WCl svSLi st list object. Theiterator will beinitialized for
that list object and positioned before the first list element. To position the iterator to avalid

element within the list, increment it using any of the oper at or ++, operator (), or
oper at or += operators.

TheWCl svConst SLi st | t er public member function creates an initialized
WCI svConst SLi st | t er object positioned before the first element in the list.

~WCl svConst SLi stlter, operator (),operator ++, operator +=reset

List Iterators 317

WClsvConstSListlter<Type>::~WCIsvConstSListlter()

Synopsis: #include <wclistit. h>
public:
~WCl svConst SLi stlter();

Semantics: The~WCl svConst SLi st |t er public member function is the destructor for the class.
The call tothe ~WCl svConst SLi st |1t er public member function isinserted implicitly
by the compiler at the point where the WCI svConst SLi st |t er object goes out of scope.

Results: TheWCl svConst SLi st | t er object isdestroyed.

SeeAlso; WCl svConst SLi stlter

318 List Iterators

WClsvConstDListlter<Type>::WClIsvConstDListlter()

Synopsis: #include <wclistit. h>
public:
WCl svConstDLi stlter();

Semantics: TheWCl svConst DLi st | t er public member function is the default constructor for the
class and initializes the iterator with no list to operate on. The r eset member function
must be called to provide the iterator with alist to iterate over.

Results: TheWCl svConst DLi st | t er public member function creates an initialized
WCI svConst DLi st |t er object.

SeeAlso:. WCl svConst DLi stlter, ~WCl svConst DLi stlter, reset

List Iterators 319

WClsvConstDListlter<Type>::WClIsvConstDListlter()

Synopsis:

Semantics:

Results:

See Also;

#include <wclistit. h>
public:
WCl svConst DLi stlter(const WCl svDLi st<Type> &);

The WCl svConst DLi st | t er public member function is a constructor for the class. The
value passed as a parameter isthe WCI svDLi st list object. Theiterator will beinitialized
for that list object and positioned before the first list element. To position the iterator to a
valid element within the list, increment it using any of the oper at or ++, oper at or
(), oroperator +=operators.

TheWCl svConst DLi st | t er public member function creates an initialized
WCI svConst DLi st | t er object positioned before the first list element.

WCI svConst DLi stlter, ~WCl svConst DLi stlter, operator (),
operator ++,operator += reset

320 List Iterators

WClsvConstDListlter<Type>::~WClsvConstDListlter()

Synopsis: #include <wclistit. h>
public:
~WCl svConst DLi stlter();

Semantics: The~WCl svConst DLi st |t er public member function is the destructor for the class.
The call tothe ~WCl svConst DLi st |1t er public member function isinserted implicitly
by the compiler at the point where the WCI svConst DLi st |t er object goes out of scope.

Results: TheWCl svConst DLi st | t er object isdestroyed.

SeeAlso; WCl svConst DLi stlter

List Iterators 321

WClsvConstSListlter<Type>WCIsvConstDListlter<Type>::container()

Synopsis: #include <wclistit. h>

public:

const WCl svSLi st <Type> *WCl svConst SLi st |t er<Type>:: contai ner ()
const ;

const WC svDLi st <Type> *WCl svConst DLi st 1t er<Type>:: cont ai ner ()
const ;

Semantics. Thecont ai ner public member function returns a pointer to the list container object. If the
iterator has not been initialized with alist object, and the undef _i t er exceptionis
enabled, the exception is thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(0) if the iterator
has not been initialized with alist.

SeeAlso: WCl svConst SLi stlter, Wl svConst DLi stlter, reset,
WCl t er Except : : undef _iter

322 List Iterators

WClsvConstSListlter<Type>::current(), WCIsvConstDListlter<Type>::current()

Synopsis: #include <wclistit. h>
public:
Type * current();

Semantics: Thecurrent public member function returns a pointer to the list item at the current iterator
position.

If theiterator is not associated with alist, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. In this
casetheundef _i t emexceptionisthrown, if enabled.

Results: A pointer to the current list element isreturned. If the current element is undefined,
NULL(O) is returned.

SeeAlso: operator (),operator ++, operator +=,operator --,operator -=
reset,WCl t er Except:: undef _item

List Iterators 323

WClsvConstSListlter<Type>WCIsvConstDListlter<Type>::operator ()()

Synopsis: #include <wclistit. h>
public:
Type * operator ()();

Semantics. Theoper at or () public member function isthe call operator for the class. Thelist
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the list, the iterator is positioned after the end of the list.

Theoper at or () public member function has the same semantics as the pre-increment
operator, oper at or ++.

If the iterator was positioned before the first element in the list, the current item will be set to
thefirst element in thelist. If thelist is empty, the iterator will be positioned after the end of
thelist.

If the iterator is not associated with alist or the iterator position before the increment was
past the last element the list, the undef _i t er exception isthrown, if enabled.

Results: Theoper at or () public member function returns a pointer to the new current item.
NULL(0) isreturned when theiterator isincremented past the end of the list.

SeeAlso: operator ++,operator += operator --,operator -=reset,
WCI t er Except : : undef _iter

324 List Iterators

WClsvConstSListlter<Type>WCIsvConstDListlter<Type>::operator ++()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
Type * operator ++();

Theoper at or ++ public member function is the pre-increment operator for the class.

The list element which follows the current item is set to be the new current item. If the
previous current item was the last element in the list, the iterator is positioned after the end of
thelist.

Theoper at or ++ public member function has the same semantics as the call operator,
operator ().

If the iterator was positioned before the first element in the list, the current item will be set to
thefirst element in thelist. If thelist is empty, the iterator will be positioned after the end of
the list.

If theiterator is not associated with alist or the iterator position before the increment was
past the last element the list, the undef _i t er exception isthrown, if enabled.

Theoper at or ++ public member function returns a pointer to the new current item.
NULL(0) isreturned when theiterator isincremented past the end of the list.

current,operator (),operator += operator --,operator -=reset,
WCI t er Except : : undef _iter

List Iterators 325

WClsvConstSListlter<Type>WCIsvConstDListlter<Type>::operator +=()

Synopsis: #include <wclistit. h>
public:
Type * operator +=(int);

Semantics: Theoper at or += public member function accepts an integer value that causes the iterator
to move that many elements after the current item. If the iterator was positioned before the
first element in the list, the operation will set the current item to be the given element in the
list.

If the current item was after the last element in the list previousto the iteration, and the
undef _i t er exception is enabled, the exception will be thrown. Attempting to increment
the iterator position more than element after the end of the list, or by less than one element
causesthei t er _r ange exception to be thrown, if enabled.

Results: Theoper at or += public member function returns a pointer to the new current item.
NULL(O) isreturned when the iterator isincremented past the end of thelist.

SeeAlso: current,operator (),operator ++ operator --,operator -=reset,
WCl t er Except::iter_range, WCI t er Except :: undef _iter

326 List Iterators

WClsvConstDListlter<Type>::operator --()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
Type * operator --();

Theoper at or - - public member function is the pre-decrement operator for the class.
Thelist element previousto the current item is set to be the new current item. If the current
item was the first element in the list, the iterator is positioned before the first element in the
list. If thelistisempty, theiterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to
the last element.

If the iterator is not associated with alist or the iterator position previous to the decrement
was before the first element thelist, the undef _i t er exception isthrown, if enabled.

Theoper at or - - public member function returns a pointer to the new current item.
NULL(O) is returned when the iterator is decremented past the first element of thelist.

current,operator (),operator ++ operator += operator -=reset,
WCl t er Except : : undef _iter

List Iterators 327

WClsvConstDListlter<Type>::operator -=()

Synopsis: #include <wclistit. h>
public:
Type * operator -=(int);

Semantics: Theoper at or - = public member function accepts an integer value that causes the iterator
to move that many elements before the current item. If the iterator was positioned after the
last element in the list, the operation will set the current item to be the given number of
elements from the end of the list.

If the current item was before the first element in the list previousto the iteration, and the
undef _i t er exception is enabled, the exception will be thrown. Attempting to decrement
the iterator position more than one element before the beginning of the list, or by less than
one element causesthe i t er _r ange exception to be thrown, if enabled.

Results: Theoper at or - = public member function returns a pointer to the new current item.
NULL(0O) isreturned when the iterator is decremented past the first element in the list.

SeeAlso: current,operator (),operator ++ operator += operator --,reset,
WCl t er Except::iter_range, WCI t er Except : : undef _i ter

328 List Iterators

WClsvConstSListlter<Type>::reset(), WCIsvConstDListlter<Type>::reset()

Synopsis: #include <wclistit. h>
public:
void reset();

Semantics: Ther eset public member function resets the iterator to theinitial state, positioning the
iterator before the first element in the associated list.

Results: The iterator is positioned before the first list element.

SeeAlso: WCl svConst SLi stlter, WCI svConst DLi stlter, contai ner

List Iterators 329

WClsvConstSListlter<Type>::reset(), WCIsvConstDListlter<Type>::reset()

Synopsis: #include <wclistit. h>
public:
voi d WCl svConst SLi stlter<Type>::reset(const WCl svSLi st <Type>
&);
voi d WCl svConst DLi stlter<Type>::reset(const WCl svDLi st <Type>
&);

Semantics. Ther eset public member function resets the iterator to operate on the specified list. The
iterator is positioned before the first element in the list.

Results: Theiterator is positioned before the first element of the specified list.

See Also: WCl svConst SLi st | ter, WCI svConst DLi st ter, cont ai ner

330 List Iterators

WClsvSListlter<Type>, WCIsvDListlter<Type>

Declared:

welistit.h

TheWCl svSLi st |t er<Type>and WCI svDLi st | t er <Type> classesarethe
templated classes used to create iterator objects for single and double linked list objects.
These classes can be used only for non-constant lists. The

WCI svDConst Li st 1t er<Type>and WCI svSConst Li st 1t er<Type> classesare
provided to iterate over constant lists.

In the description of each member function, the text Type isused to indicate the list element
type specified as the template parameter.

TheWCl t er Except classisabase class of the WCI svSLi st |t er <Type>and

WCI svDLi st |t er <Type> classes and providesthe except i ons member function.
This member function controls the exceptions which can be thrown by the

WCI svSLi st It er<Type>and WCI svDLi st 1t er <Type> objects. No exceptions are
enabled unless they are set by the except i ons member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate in the single
linked list iterator classes. Setting those functions as private membersin the derived classis
the standard mechanism to prevent them from being invoked. The following member
functions are declared in the single linked list iterator private interface:

Type * operator --();
Type * operator -=(int);
int insert(Type *);

Public Member Functions
The following member functions are declared in the public interface:

WCl svSListlter();

WCI svSLi stlter(WC svSLi st <Type> &);

~WCl svSListlter();

WCl svDLi stlter();

WCI svDLi stlter(WC svDLi st<Type> &);

~WCl svDListlter();

i nt append(Type *);

WCI svSLi st <Type> *WCl svSLi stlter<Type>::container() const;
WCI svDLi st <Type> *WCl svDLi stlter<Type>::container() const;
Type * current() const;

void reset();

void WCl svSLi stlter<Type>::reset(Wl svSLi st<Type> &);
void WCl svDLi stlter<Type>::reset(W svDLi st<Type> &);

List Iterators 331

WClsvSListlter<Type>, WCIsvDListlter<Type>

See Also;

In theiterators for double linked lists only:

int insert(Type *);

Public Member Operators

The following member operators are declared in the public interface:
Type * operator ()();

Type * operator ++();

Type * operator +=(int);

In the iterators for double linked lists only:

Type * operator --();
Type * operator -=(int);

WCl svSList::forAll,WIsvDList::forAll

332 List Iterators

WClsvSListlter<Type>::WClsvSListlter()

Synopsis:

Semantics:

Results:

See Also;

#include <wclistit. h>
public:
WCl svSListlter();

TheWCl svSLi st | t er public member function is the default constructor for the class and
initializes the iterator with no list to operate on. The r eset member function must be called
to provide the iterator with alist to iterate over.

TheWCl svSLi st | t er public member function createsaninitialized WCI svSLi st 1t er
object.

WCl svSListlter, ~WCl svSLi stlter,reset

List Iterators 333

WClsvSListlter<Type>::WClsvSListlter()

Synopsis: #include <wclistit. h>
public:
WCl svSLi stlter(WC svSLi st<Type> &);

Semantics: TheWCl svSLi st |t er public member function is a constructor for the class. The value
passed as a parameter isa WCl svSLi st list object. The iterator will beinitialized for that
list object and positioned before the first list element. To position the iterator to avalid
element within the list, increment it using any of the oper at or ++, operator (), or
oper at or += operators.

Results: TheWCl svSLi st | t er public member function createsan initialized WCI svSLi st |t er
object positioned before the first element in thelist.

SeeAlso: ~WCIsvSListlter,operator (),operator ++, operator +=reset

334 List Iterators

WClsvSListlter<Type>::~WCIsvSListlter()

Synopsis: #include <wclistit. h>
public:
~WCl svSListlter();

Semantics: The~WCl svSLi st 1t er public member function is the destructor for the class. The call to
the ~WCl svSLi st | t er public member function isinserted implicitly by the compiler at
the point where the WCI svSLi st | t er object goes out of scope.

Results: TheWCl svSLi st | t er object isdestroyed.

SeeAlso: WCI svSListlter

List Iterators 335

WClsvDListlter<Type>::WCIsvDListlter()

Synopsis: #include <wclistit. h>
public:
WCl svDLi stlter();

Semantics: TheWCl svDLi st | t er public member function is the default constructor for the class and
initializes the iterator with no list to operate on. The r eset member function must be called
to provide the iterator with alist to iterate over.

Results: TheWCl svDLi st | t er public member function createsaninitialized WCI svDLi st 1t er
object.

SeeAlso: WCl svDListlter, ~WCl svDLi stlter,reset

336 List Iterators

WClsvDListlter<Type>::WCIsvDListlter()

Synopsis:

Semantics:

Results:

See Also;

#include <wclistit. h>
public:
WCl svDLi stlter(WC svDLi st<Type> &);

TheWCl svDLi st |t er public member function is a constructor for the class. The value
passed as a parameter isthe WCI svDLi st list object. Theiterator will beinitialized for that
list object and positioned before the first list element. To position the iterator to avalid
element within the list, increment it using any of the oper at or ++, operator (), or
oper at or += operators.

TheWCl svDLi st |t er public member function createsan initialized WCI svDLi st |t er
object positioned before the first list element.

WCI svDLi stlter,~WCl svDLi stlter,operator (),operator ++,
operator += reset

List Iterators 337

WClsvDListlter<Type>::~WClsvDListlter()

Synopsis: #include <wclistit. h>
public:
~WCl svDLi stlter();

Semantics: The~WCl svDLi st 1t er public member function is the destructor for the class. The call to
the ~\WWCl svDLi st | t er public member function isinserted implicitly by the compiler at
the point where the WCI svDLi st | t er object goes out of scope.

Results: TheWCl svDLi st |t er object isdestroyed.

SeeAlso: WCl svDLi stlter

338 List Iterators

WClsvSListlter<Type>::append(), WCIsvDListlter<Type>::append()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
i nt append(Type *);

The append public member function inserts a new element into the list container object.
The new element is inserted after the current iterator item.

If theiterator is not associated with alist, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. The
element is not appended. If the undef _i t er exception isenabled, it isthrown.

The new element isinserted after the current iterator item. A TRUE value (non-zero) is
returned if the append is successful. A FALSE (zero) result is returned if the append fails.

i nsert, WCExcept :: out _of nmenory, WCI t er Except : : undef _iter

List Iterators 339

WClsvSListlter<Type> WCIsvDListlter<Type>::container()

Synopsis: #include <wclistit. h>
public:
WCI svSLi st <Type> *WCl svSLi stlter<Type>::container() const;
WCI svDLi st <Type> *WCl svDLi stlter<Type>::container() const;

Semantics: Thecont ai ner public member function returns a pointer to the list container object. If the
iterator has not been initialized with alist object, and the undef _i t er exceptionis
enabled, the exception is thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(O) if the iterator
has not been initialized with alist.

SeeAlso: WCl svSListlter, WCI svDLi stlter,reset,WClterExcept::undef _iter

340 List Iterators

WClsvSListlter<Type>::current(), WCIsvDListlter<Type>::current()

Synopsis: #include <wclistit. h>
public:
Type * current();

Semantics: Thecurrent public member function returns a pointer to the list item at the current iterator
position.

If theiterator is not associated with alist, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. In this
casetheundef _i t emexceptionisthrown, if enabled.

Results: A pointer to the current list element isreturned. If the current element is undefined,
NULL(O) is returned.

SeeAlso: operator (),operator ++, operator +=,operator --,operator -=
reset,WCl t er Except:: undef _item

List Iterators 341

WClsvDListlter<Type>::insert()

Synopsis: #include <wclistit. h>
public:
int insert(Type *);

Semantics: Thei nsert public member function inserts a new element into the list container object.
The new element isinserted before the current iterator item. This process uses the previous
link in the double linked list, sothe i nsert public member function is not allowed with
single linked lists.

If the iterator is not associated with alist, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. The
element is not inserted. If the undef _i t er exception is enabled, the exception is thrown.

Results: The new element isinserted before the current iterator item. A TRUE value (non-zero) is
returned if the insert is successful. A FALSE (zero) result isreturned if the insert fails.

SeeAlso: append, WCExcept : : out _of nmenory, WCI t er Except : : undef _iter

342 List Iterators

WClsvSListlter<Type>WCIsvDListlter<Type>::operator ()()

Synopsis:

Semantics:

Results:

See Also;

#include <wclistit. h>
public:
Type * operator ()();

Theoper at or () public member function isthe call operator for the class. Thelist
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the list, the iterator is positioned after the end of the list.

Theoper at or () public member function has the same semantics as the pre-increment
operator, oper at or ++.

If the iterator was positioned before the first element in the list, the current item will be set to
thefirst element in thelist. If thelist is empty, the iterator will be positioned after the end of
thelist.

If the iterator is not associated with alist or the iterator position before the increment was
past the last element the list, the undef _i t er exception isthrown, if enabled.

Theoper at or () public member function returns a pointer to the new current item.
NULL(0) isreturned when theiterator isincremented past the end of the list.

operator ++, operator += operator --,operator -=reset,
WCI t er Except : : undef _iter

List Iterators 343

WClsvSListlter<Type> WCIsvDListlter<Type>::operator ++()

Synopsis: #include <wclistit. h>
public:
Type * operator ++();

Semantics: Theoper at or ++ public member function is the pre-increment operator for the class.
The list element which follows the current item is set to be the new current item. If the
previous current item was the last element in the list, the iterator is positioned after the end of
thelist.

Theoper at or ++ public member function has the same semantics as the call operator,
operator ().

If the iterator was positioned before the first element in the list, the current item will be set to
thefirst element in thelist. If thelist is empty, the iterator will be positioned after the end of
the list.

If theiterator is not associated with alist or the iterator position before the increment was
past the last element the list, the undef _i t er exception isthrown, if enabled.

Results: The oper at or ++ public member function returns a pointer to the new current item.
NULL(0) isreturned when theiterator isincremented past the end of the list.

SeeAlso: current,operator (),operator += operator --,operator -=reset,
WCI t er Except : : undef _iter

344 List Iterators

WClsvSListlter<Type>WCIsvDListlter<Type>::operator +=()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
Type * operator +=(int);

Theoper at or += public member function accepts an integer value that causes the iterator
to move that many elements after the current item. If the iterator was positioned before the
first element in the list, the operation will set the current item to be the given element in the
list.

If the current item was after the last element in the list previousto the iteration, and the
undef _i t er exception is enabled, the exception will be thrown. Attempting to increment
the iterator position more than element after the end of the list, or by less than one element
causesthei t er _r ange exception to be thrown, if enabled.

Theoper at or += public member function returns a pointer to the new current item.
NULL(O) isreturned when the iterator isincremented past the end of thelist.

current,operator (),operator ++ operator --,operator -=reset,
WCl t er Except::iter_range, WCI t er Except :: undef _iter

List Iterators 345

WClsvDListlter<Type>::operator --()

Synopsis: #include <wclistit. h>
public:
Type * operator --();

Semantics: Theoper at or -- public member function is the pre-decrement operator for the class.
Thelist element previousto the current item is set to be the new current item. If the current
item was the first element in the list, the iterator is positioned before the first element in the
list. If thelistisempty, theiterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to
the last element.

If the iterator is not associated with alist or the iterator position previous to the decrement
was before the first element thelist, the undef _i t er exception isthrown, if enabled.

Results: Theoper at or - - public member function returns a pointer to the new current item.
NULL(O) is returned when the iterator is decremented past the first element of thelist.

SeeAlso: current,operator (),operator ++ operator += operator -=reset,
WCl t er Except : : undef _iter

346 List Iterators

WClsvDListlter<Type>::operator -=()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
Type * operator -=(int);

Theoper at or - = public member function accepts an integer value that causes the iterator
to move that many elements before the current item. If the iterator was positioned after the
last element in the list, the operation will set the current item to be the given number of
elements from the end of the list.

If the current item was before the first element in the list previousto the iteration, and the
undef _i t er exception is enabled, the exception will be thrown. Attempting to decrement
the iterator position more than one element before the beginning of the list, or by less than
one element causesthe i t er _r ange exception to be thrown, if enabled.

Theoper at or - = public member function returns a pointer to the new current item.
NULL(0O) isreturned when the iterator is decremented past the first element in the list.

current,operator (),operator ++ operator += operator --,reset,
WCl t er Except::iter_range, WCI t er Except : : undef _i ter

List Iterators 347

WClsvSListlter<Type>::reset(), WCIsvDListlter<Type>::reset()

Synopsis: #include <wclistit. h>
public:
void reset();

Semantics: Ther eset public member function resets the iterator to theinitial state, positioning the
iterator before the first element in the associated list.

Results: The iterator is positioned before the first list element.

SeeAlso: WCl svSListlter, Wl svDLi stlter,container

348 List Iterators

WClsvSListlter<Type>::reset(), WCIsvDListlter<Type>::reset()

Synopsis: #include <wclistit. h>
public:
void WCl svSLi stlter<Type>::reset(WCl svSLi st<Type> &);
void WCl svDLi stlter<Type>::reset(Wl svDLi st<Type> &);

Semantics. Ther eset public member function resets the iterator to operate on the specified list. The
iterator is positioned before the first element in the list.

Results: Theiterator is positioned before the first element of the specified list.

SeeAlso: WCl svSListlter, Wl svDLi stlter,container

List Iterators 349

WCPtrConstSListlter<Type>, WCPtrConstDListlter<Type>

Declared: wclistit.h

The WCPt r Const SLi st |t er <Type>and WCPt r Const DLi st | t er <Type> classes
are the templated classes used to create iterator objects for constant single and double linked
list objects. These classes may be used to iterate over non-constant lists, but the

WCPt r DLi st | t er <Type>and WCPt r SLi st | t er <Type> classes provide additional
functionality for only non-constant lists.

In the description of each member function, the text Type isused to indicate the list element
type specified as the template parameter.

TheWCl t er Except classisabase class of the WCPt r Const SLi st |t er <Type> and
WCPt r Const DLi st | t er <Type> classes and providesthe except i ons member
function. This member function controls the exceptions which can be thrown by the

WCPt r Const SLi st It er <Type>and WCPt r Const DLi st |t er <Type> objects. No
exceptions are enabled unless they are set by the except i ons member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate for the
constant list iterator classes. Setting those functions as private members in the derived class
is the standard mechanism to prevent them from being invoked.

i nt append(Type *);
int insert(Type *);

Public Member Functions
The following member functions are declared in the public interface:

WCPt r Const SLi stlter();

WCPt r Const SLi stlter(const WCPtrSLi st<Type> &);

~WCPt r Const SLi stlter();

WCPt r ConstDListlter();

WCPt r Const DLi stlter(const WCPtrDLi st<Type> &);

~WCPt r Const DLi stlter();

const WCPtr SLi st <Type> *WCPt r Const SLi st |t er<Type>:: contai ner ()
const;

const WCPtrDLi st <Type> *WCPtr Const DLi stlter<Type>:: container ()
const;

Type * current() const;

void reset();

voi d WCPt r Const SLi stlter<Type>::reset(const WCPtrSLi st<Type>
&);

350 List Iterators

WCPtrConstSListlter<Type>, WCPtrConstDListlter<Type>

voi d WCPt r Const DLi stlter<Type>::reset(const WCPtrDLi st<Type>
&);

Public Member Operators

The following member operators are declared in the public interface:
int operator ()();

i nt operator ++();

int operator +=(int);

In the iterators for double linked lists only:

int operator --();
int operator -=(int);

SeeAlso:. WCPtrSList::forAll,WPtrDList::forAll

List Iterators 351

WCPtrConstSListlter<Type>::WCPtrConstSListlter()

Synopsis: #include <wclistit. h>
public:
WCPt r Const SListlter();

Semantics: The WCPt r Const SLi st | t er public member function is the default constructor for the
class and initializes the iterator with no list to operate on. The r eset member function
must be called to provide the iterator with alist to iterate over.

Results: The WCPt r Const SLi st | t er public member function creates an initialized
WCPt r Const SLi st |t er object.

SeeAlso: WCPtr Const SLi stlter, ~WCPtr Const SLi stlter, reset

352 List Iterators

WCPtrConstSListlter<Type>::WCPtrConstSListlter()

Synopsis:

Semantics:

Results:

See Also;

#include <wclistit. h>
public:
WCPt r Const SLi stlter(const WCPtrSLi st<Type> &);

The WCPt r Const SLi st | t er public member function is a constructor for the class. The

value passed as a parameter isa WCPt r SLi st list object. Theiterator will beinitialized for
that list object and positioned before the first list element. To position the iterator to avalid

element within the list, increment it using any of the oper at or ++, operator (), or
oper at or += operators.

TheWCPt r Const SLi st | t er public member function creates an initialized
WCPt r Const SLi st | t er object positioned before the first element in the list.

~WCPt r Const SLi stlter, operator (),operator ++, operator +=reset

List Iterators 353

WCPtrConstSListlter<Type>::~WCPtrConstSListlter()

Synopsis: #include <wclistit. h>
public:
~WCPt r Const SLi stlter();

Semantics: The~WCPt r Const SLi st | t er public member function is the destructor for the class.
The call tothe ~WCPt r Const SLi st |t er public member function isinserted implicitly
by the compiler at the point where the WCPt r Const SLi st | t er object goes out of scope.

Results: The WCPt r Const SLi st | t er object isdestroyed.

SeeAlso; WCPtr Const SLi stlter

354 List Iterators

WCPtrConstDListlter<Type>::WCPtrConstDListlter()

Synopsis: #include <wclistit. h>
public:
WCPt r ConstDLi stlter();

Semantics: The WCPt r Const DLi st | t er public member function is the default constructor for the
class and initializes the iterator with no list to operate on. The r eset member function
must be called to provide the iterator with alist to iterate over.

Results: The WCPt r Const DLi st | t er public member function creates an initialized
WCPt r Const DLi st |t er object.

SeeAlso:. WCPtr Const DLi stlter, ~WCPtr Const DLi stlter, reset

List Iterators 355

WCPtrConstDListlter<Type>::WCPtrConstDListlter()

Synopsis:

Semantics:

Results:

See Also;

#include <wclistit. h>
public:
WCPt r Const DLi stlter(const WCPtrDLi st<Type> &);

The WCPt r Const DLi st | t er public member function is a constructor for the class. The
value passed as a parameter isthe WCPt r DLi st list object. The iterator will beinitialized
for that list object and positioned before the first list element. To position the iterator to a
valid element within the list, increment it using any of the oper at or ++, oper at or
(), oroperator +=operators.

The WCPt r Const DLi st | t er public member function creates an initialized
WCPt r Const DLi st | t er object positioned before the first list element.

WCPt r Const DLi stlter, ~\WCPt r Const DLi stlter, operator (),
operator ++,operator += reset

356 List Iterators

WCPtrConstDListlter<Type>::~WCPtrConstDListlter()

Synopsis: #include <wclistit. h>
public:
~WCPt r Const DLi stlter();

Semantics: The~WCPt r Const DLi st |t er public member function is the destructor for the class.
The call tothe ~WCPt r Const DLi st |t er public member function isinserted implicitly
by the compiler at the point where the WCPt r Const DLi st | t er object goes out of scope.

Results: The WCPt r Const DLi st | t er object isdestroyed.

SeeAlso; WCPtr Const DLi stlter

List Iterators 357

WCPtrConstSListlter<Type>WCPtrConstDListlter<Type>::container()

Synopsis: #include <wclistit. h>

public:

const WCPtr SLi st <Type> *WCPtr Const SLi st |t er<Type>:: contai ner ()
const ;

const WCPtrDLi st <Type> *WCPtr Const DLi st1ter<Type>:: contai ner ()
const ;

Semantics. Thecont ai ner public member function returns a pointer to the list container object. If the
iterator has not been initialized with alist object, and the undef _i t er exceptionis
enabled, the exception is thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(0) if the iterator
has not been initialized with alist.

SeeAlso:. WCPtr Const SLi stlter, WCPtr Const DLi stlter, reset,
WCl t er Except : : undef _iter

358 List Iterators

WCPtrConstSListlter<Type>::current(), WCPtrConstDListlter<Type>::current()

Synopsis: #include <wclistit. h>
public:
Type * current();

Semantics: Thecurrent public member function returns a pointer to the list item at the current iterator
position.

If theiterator is not associated with alist, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. In this
casetheundef _i t emexceptionisthrown, if enabled.

Results: A pointer to the current list element isreturned. If the current element is undefined, an
uninitialized pointer is returned.

SeeAlso: operator (),operator ++, operator +=,operator --,operator -=
reset,WCl t er Except:: undef _item

List Iterators 359

WCPtrConstSListlter<Type>WCPtrConstDListlter<Type>::operator ()()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int operator ()();

Theoper at or () public member function isthe call operator for the class. Thelist
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the list, the iterator is positioned after the end of the list.

Theoper at or () public member function has the same semantics as the pre-increment
operator, oper at or ++.

If the iterator was positioned before the first element in the list, the current item will be set to
thefirst element in thelist. If thelist is empty, the iterator will be positioned after the end of
thelist.

If the iterator is not associated with alist or the iterator position before the increment was
past the last element the list, the undef _i t er exception isthrown, if enabled.

Theoper at or () public member function returns anon-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator isincremented past the end of
thelist.

operator ++, operator += operator --,operator -=reset,
WCI t er Except: : undef _iter

360 List Iterators

WCPtrConstSListlter<Type>WCPtrConstDListlter<Type>::operator ++()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
i nt operator ++();

Theoper at or ++ public member function is the pre-increment operator for the class.

The list element which follows the current item is set to be the new current item. If the
previous current item was the last element in the list, the iterator is positioned after the end of
thelist.

Theoper at or ++ public member function has the same semantics as the call operator,
operator ().

If the iterator was positioned before the first element in the list, the current item will be set to
thefirst element in thelist. If thelist is empty, the iterator will be positioned after the end of
the list.

If theiterator is not associated with alist or the iterator position before the increment was
past the last element the list, the undef _i t er exception isthrown, if enabled.

Theoper at or ++ public member function returns a non-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator isincremented past the end of
thelist.

current,operator (),operator += operator --,operator -=reset,
WCI t er Except : : undef _iter

List Iterators 361

WCPtrConstSListlter<Type>WCPtrConstDListlter<Type>::operator +=()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int operator +=(int);

Theoper at or += public member function accepts an integer value that causes the iterator
to move that many elements after the current item. If the iterator was positioned before the
first element in the list, the operation will set the current item to be the given element in the
list.

If the current item was after the last element in the list previousto the iteration, and the
undef _i t er exception is enabled, the exception will be thrown. Attempting to increment
the iterator position more than element after the end of the list, or by less than one element
causesthei t er _r ange exception to be thrown, if enabled.

Theoper at or += public member function returns anon-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator isincremented past the end of
thelist.

current,operator (),operator ++ operator --,operator -=reset,
WCl t er Except::iter_range, WCI t er Except : : undef _i ter

362 List Iterators

WCPtrConstDListlter<Type>::operator --()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int operator --();

Theoper at or - - public member function is the pre-decrement operator for the class.
Thelist element previousto the current item is set to be the new current item. If the current
item was the first element in the list, the iterator is positioned before the first element in the
list. If thelistisempty, theiterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to
the last element.

If the iterator is not associated with alist or the iterator position previous to the decrement
was before the first element thelist, the undef _i t er exception isthrown, if enabled.

Theoper at or - - public member function returns anon-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator is decremented past the first
element of thelist.

current,operator (),operator ++ operator += operator -= reset,
WCI t er Except : : undef _iter

List Iterators 363

WCPtrConstDListlter<Type>::operator -=()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int operator -=(int);

Theoper at or - = public member function accepts an integer value that causes the iterator
to move that many elements before the current item. If the iterator was positioned after the
last element in the list, the operation will set the current item to be the given number of
elements from the end of the list.

If the current item was before the first element in the list previousto the iteration, and the
undef _i t er exception is enabled, the exception will be thrown. Attempting to decrement
the iterator position more than one element before the beginning of the list, or by less than
one element causesthe i t er _r ange exception to be thrown, if enabled.

Theoper at or - = public member function returns anon-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator is decremented past the first
element in thelist.

current,operator (),operator ++ operator += operator --,reset,
WCl t er Except::iter_range, WCI t er Except : : undef _i ter

364 List Iterators

WCPtrConstSListlter<Type>::reset(), WCPtrConstDListlter<Type>::reset()

Synopsis: #include <wclistit. h>
public:
void reset();

Semantics: Ther eset public member function resets the iterator to theinitial state, positioning the
iterator before the first element in the associated list.

Results: The iterator is positioned before the first list element.

SeeAlso: WCPtr Const SLi stlter, WCPt r Const DLi st ter, cont ai ner

List Iterators 365

WCPtrConstSListlter<Type>::reset(), WCPtrConstDListlter<Type>::reset()

Synopsis: #include <wclistit. h>
public:
voi d WCPt r Const SLi stlter<Type>::reset(const WCPtrSLi st<Type>
&);
voi d WCPt r Const DLi stlter<Type>::reset(const WCPtrDLi st<Type>
&);

Semantics. Ther eset public member function resets the iterator to operate on the specified list. The
iterator is positioned before the first element in the list.

Results: Theiterator is positioned before the first element of the specified list.

See Also: WCPt r Const SLi st | ter, WCPt r Const DLi st |t er, cont ai ner

366 List Iterators

WCPtrSListlter<Type>, WCPtrDListlter<Type>

Declared:

welistit.h

TheWCPt r SLi st |t er <Type>and WCPt r DLi st | t er <Type> classes arethe
templated classes used to create iterator objects for single and double linked list objects.
These classes can be used only for non-constant lists. The

WCPt r DConst Li st |t er <Type>and WCPt r SConst Li st |t er <Type> classesare
provided to iterate over constant lists.

In the description of each member function, the text Type isused to indicate the list element
type specified as the template parameter.

TheWCl t er Except classisabase class of the WCPt r SLi st | t er <Type> and

WCPt r DLi st | t er <Type> classes and providesthe except i ons member function.
This member function controls the exceptions which can be thrown by the

WCPt r SLi st It er <Type>and WCPt r DLi st | t er <Type> objects. No exceptions are
enabled unless they are set by the except i ons member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate in the single
linked list iterator classes. Setting those functions as private membersin the derived classis
the standard mechanism to prevent them from being invoked. The following member
functions are declared in the single linked list iterator private interface:

int operator --();
int operator -=(int);
int insert(Type *);

Public Member Functions
The following member functions are declared in the public interface:

WCPtrSListlter();

WCPt r SLi stlter(WCPtrSLi st<Type> &);

~WCPtrSListlter();

WCPt rDLi stlter();

WCPt r DLi stlter(WCPtrDLi st<Type> &);

~WCPtrDLi stlter();

i nt append(Type *);

WCPt r SLi st <Type> *WCPt r SLi stlter<Type>::container() const;
WCPt r DLi st <Type> *WCPt r DLi st |t er<Type>::contai ner() const;
Type * current() const;

void reset();

void WCPtr SLi stlter<Type>::reset(WCPtrSList<Type> &);
void WCPtrDLi stlter<Type>::reset(WCPtrDLi st<Type> &);

List Iterators 367

WCPtrSListlter<Type>, WCPtrDListlter<Type>

See Also;

In theiterators for double linked lists only:

int insert(Type *);

Public Member Operators

The following member operators are declared in the public interface:
int operator ()();

i nt operator ++();

int operator +=(int);

In the iterators for double linked lists only:

int operator --();
int operator -=(int);

WCPtrSList::forAll,WPtrDLi st::forAll

368 List Iterators

WCPtrSListlter<Type>::WCPtrSListlter()

Synopsis:

Semantics:

Results:

See Also;

#include <wclistit. h>
public:
WCPtrSListlter();

The WCPt r SLi st | t er public member function is the default constructor for the class and
initializes the iterator with no list to operate on. The r eset member function must be called
to provide the iterator with alist to iterate over.

The WCPt r SLi st | t er public member function createsan initialized WCPt r SLi st 1 t er
object.

WCPtrSListlter, ~WCPtrSListlter,reset

List Iterators 369

WCPtrSListlter<Type>::WCPtrSListlter()

Synopsis: #include <wclistit. h>
public:
WCPt r SLi stlter(WCPtrSLi st<Type> &);

Semantics: TheWCPt r SLi st | t er public member function is a constructor for the class. The value
passed as a parameter isa WCPt r SLi st list object. The iterator will beinitialized for that
list object and positioned before the first list element. To position the iterator to avalid
element within the list, increment it using any of the oper at or ++, operator (), or
oper at or += operators.

Results: The WCPt r SLi st | t er public member function creates an initialized WCPt r SLi st 1 t er
object positioned before the first element in thelist.

SeeAlso: ~WCPtrSListlter,operator (),operator ++, operator +=reset

370 List Iterators

WCPtrSListlter<Type>::~WCPtrSListlter()

Synopsis: #include <wclistit. h>
public:
~WCPtrSListlter();

Semantics: The~WCPt r SLi st 1t er public member function is the destructor for the class. The call to
the ~\WWCPt r SLi st | t er public member function is inserted implicitly by the compiler at
the point where the WCPt r SLi st | t er object goes out of scope.

Results: TheWCPt r SLi st | t er object isdestroyed.

SeeAlso: WCPtrSListlter

List Iterators 371

WCPtrDListlter<Type>::WCPtrDListlter()

Synopsis: #include <wclistit. h>
public:
WCPt rDLi stlter();

Semantics: TheWCPt r DLi st | t er public member function is the default constructor for the class and
initializes the iterator with no list to operate on. The r eset member function must be called
to provide the iterator with alist to iterate over.

Results: TheWCPt r DLi st | t er public member function createsaninitialized WCPt r DLi st | t er
object.

SeeAlso:. WCPtrDListlter, ~WCPtrDLi stlter,reset

372 List Iterators

WCPtrDListlter<Type>::WCPtrDListlter()

Synopsis:

Semantics:

Results:

See Also;

#include <wclistit. h>
public:
WCPt r DLi stlter(WCPtrDLi st<Type> &);

The WCPt r DLi st | t er public member function is a constructor for the class. The value
passed as a parameter isthe WCPt r DLi st list object. Theiterator will beinitialized for that
list object and positioned before the first list element. To position the iterator to avalid
element within the list, increment it using any of the oper at or ++, operator (), or
oper at or += operators.

The WCPt r DLi st | t er public member function creates an initialized WCPt r DLi st I t er
object positioned before the first list element.

WCPt rDLi stlter,~WCPtrDLi stlter,operator (),operator ++,
operator += reset

List Iterators 373

WCPtrDListlter<Type>::~WCPtrDListlter()

Synopsis: #include <wclistit. h>
public:
~WCPtrDListlter();

Semantics: The~WCPt r DLi st |1t er public member function is the destructor for the class. The call to
the ~\WWCPt r DLi st | t er public member function isinserted implicitly by the compiler at
the point where the WCPt r DLi st | t er object goes out of scope.

Results: The WCPt r DLi st | t er object is destroyed.

SeeAlso: WCPtrDListlter

374 List Iterators

WCPtrSListlter<Type>::append(), WCPtrDListlter<Type>::append()

Synopsis: #include <wclistit. h>
public:
i nt append(Type *);

Semantics: Theappend public member function inserts a new element into the list container object.
The new element is inserted after the current iterator item.

If theiterator is not associated with alist, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. The
element is not appended. If the undef _i t er exception isenabled, it isthrown.

If the append fails, the out _of _nmenor y exception isthrown, if enabled in thelist being
iterated over. Thelist remains unchanged.

Results: The new element isinserted after the current iterator item. A TRUE value (non-zero) is
returned if the append is successful. A FALSE (zero) result is returned if the append fails.

SeeAlso: insert, WCExcept: :out _of _nenory, WCI t er Except : : undef _iter

List Iterators 375

WCPtrSListlter<Type> WCPtrDListlter<Type>::container()

Synopsis: #include <wclistit. h>
public:
WCPt r SLi st <Type> *WCPt r SLi stlter<Type>::container() const;
WCPt r DLi st <Type> *WCPt r DLi st |t er<Type>::contai ner() const;

Semantics: Thecont ai ner public member function returns a pointer to the list container object. If the
iterator has not been initialized with alist object, and the undef _i t er exceptionis
enabled, the exception is thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(O) if the iterator
has not been initialized with alist.

SeeAlso: WCPtrSListlter, WCPtrDLi stlter,reset,WClterExcept::undef _iter

376 List Iterators

WCPtrSListlter<Type>::current(), WCPtrDListlter<Type>::current()

Synopsis: #include <wclistit. h>
public:
Type * current();

Semantics: Thecurrent public member function returns a pointer to the list item at the current iterator
position.

If theiterator is not associated with alist, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. In this
casetheundef _i t emexceptionisthrown, if enabled.

Results: A pointer to the current list element isreturned. If the current element is undefined, an
uninitialized pointer is returned.

SeeAlso: operator (),operator ++, operator +=,operator --,operator -=
reset,WCl t er Except:: undef _item

List Iterators 377

WCPtrDListlter<Type>::insert()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int insert(Type *);

Thei nsert public member function inserts a new element into the list container object.
The new element isinserted before the current iterator item. This process uses the previous
link in the double linked list, sothe i nsert public member function is not allowed with
single linked lists.

If the iterator is not associated with alist, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. The
element is not inserted. If the undef _i t er exception is enabled, the exception is thrown.

If theinsert fails and the out _of _nmenory exception is enabled in the list being iterated
over, the exception isthrown. The list remains unchanged.

The new element isinserted before the current iterator item. A TRUE value (non-zero) is
returned if the insert is successful. A FALSE (zero) result isreturned if the insert fails.

append, WCExcept : : out _of _nenory, WCI t er Except : : undef _i ter

378 List Iterators

WCPtrSListlter<Type> WCPtrDListlter<Type>::operator ()()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int operator ()();

Theoper at or () public member function isthe call operator for the class. Thelist
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the list, the iterator is positioned after the end of the list.

Theoper at or () public member function has the same semantics as the pre-increment
operator, oper at or ++.

If the iterator was positioned before the first element in the list, the current item will be set to
thefirst element in thelist. If thelist is empty, the iterator will be positioned after the end of
thelist.

If the iterator is not associated with alist or the iterator position before the increment was
past the last element the list, the undef _i t er exception isthrown, if enabled.

Theoper at or () public member function returns anon-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator isincremented past the end of
thelist.

operator ++, operator += operator --,operator -=reset,
WCI t er Except: : undef _iter

List Iterators 379

WCPtrSListlter<Type> WCPtrDListlter<Type>::operator ++()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
i nt operator ++();

Theoper at or ++ public member function is the pre-increment operator for the class.

The list element which follows the current item is set to be the new current item. If the
previous current item was the last element in the list, the iterator is positioned after the end of
thelist.

Theoper at or ++ public member function has the same semantics as the call operator,
operator ().

If the iterator was positioned before the first element in the list, the current item will be set to
thefirst element in thelist. If thelist is empty, the iterator will be positioned after the end of
the list.

If theiterator is not associated with alist or the iterator position before the increment was
past the last element the list, the undef _i t er exception isthrown, if enabled.

Theoper at or ++ public member function returns a non-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator isincremented past the end of
thelist.

current,operator (),operator += operator --,operator -=reset,
WCI t er Except : : undef _iter

380 List Iterators

WCPtrSListlter<Type> WCPtrDListlter<Type>::operator +=()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int operator +=(int);

Theoper at or += public member function accepts an integer value that causes the iterator
to move that many elements after the current item. If the iterator was positioned before the
first element in the list, the operation will set the current item to be the given element in the
list.

If the current item was after the last element in the list previousto the iteration, and the
undef _i t er exception is enabled, the exception will be thrown. Attempting to increment
the iterator position more than element after the end of the list, or by less than one element
causesthei t er _r ange exception to be thrown, if enabled.

Theoper at or += public member function returns anon-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator isincremented past the end of
thelist.

current,operator (),operator ++ operator --,operator -=reset,
WCl t er Except::iter_range, WCI t er Except : : undef _i ter

List Iterators 381

WCPtrDListlter<Type>::operator --()

Synopsis: #include <wclistit. h>
public:
int operator --();

Semantics: Theoper at or -- public member function is the pre-decrement operator for the class.
Thelist element previousto the current item is set to be the new current item. If the current
item was the first element in the list, the iterator is positioned before the first element in the
list. If thelistisempty, theiterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to
the last element.

If the iterator is not associated with alist or the iterator position previous to the decrement
was before the first element thelist, the undef _i t er exception isthrown, if enabled.

Results: Theoper at or - - public member function returns anon-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator is decremented past the first
element of thelist.

SeeAlso: current,operator (),operator ++ operator += operator -=reset,
WCI t er Except : : undef _iter

382 List Iterators

WCPtrDListlter<Type>::operator -=()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int operator -=(int);

Theoper at or - = public member function accepts an integer value that causes the iterator
to move that many elements before the current item. If the iterator was positioned after the
last element in the list, the operation will set the current item to be the given number of
elements from the end of the list.

If the current item was before the first element in the list previousto the iteration, and the
undef _i t er exception is enabled, the exception will be thrown. Attempting to decrement
the iterator position more than one element before the beginning of the list, or by less than
one element causesthe i t er _r ange exception to be thrown, if enabled.

Theoper at or - = public member function returns anon-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator is decremented past the first
element in thelist.

current,operator (),operator ++ operator += operator --,reset,
WCl t er Except::iter_range, WCI t er Except : : undef _i ter

List Iterators 383

WCPtrSListlter<Type>::reset(), WCPtrDListlter<Type>::reset()

Synopsis: #include <wclistit. h>
public:
void reset();

Semantics: Ther eset public member function resets the iterator to theinitial state, positioning the
iterator before the first element in the associated list.

Results: The iterator is positioned before the first list element.

SeeAlso: WCPtrSListlter, WCPtrDLi stlter, container

384 List Iterators

WCPtrSListlter<Type>::reset(), WCPtrDListlter<Type>::reset()

Synopsis: #include <wclistit. h>
public:
void WCPtr SLi stlter<Type>::reset(WCPtrSList<Type> &);
void WCPtrDLi stlter<Type>::reset(WCPtrDLi st<Type> &);

Semantics. Ther eset public member function resets the iterator to operate on the specified list. The
iterator is positioned before the first element in the list.

Results: Theiterator is positioned before the first element of the specified list.

SeeAlso: WCPtrSListlter, WCPtrDLi stlter,container

List Iterators 385

WCValConstSListlter<Type>, WCValConstDListlter<Type>

Declared:

welistit.h

TheWCVal Const SLi st |t er <Type>and WCVal Const DLi st | t er <Type> classes
are the templated classes used to create iterator objects for constant single and double linked
list objects. These classes may be used to iterate over non-constant lists, but the

WCVal DLi st | t er <Type> and WCVal SLi st | t er <Type> classes provide additional
functionality for only non-constant lists.

In the description of each member function, the text Type isused to indicate the list element
type specified as the template parameter.

TheWCl t er Except classisabase class of the WCVal Const SLi st |t er <Type> and
WCVal Const DLi st |t er <Type> classes and providesthe except i ons member
function. This member function controls the exceptions which can be thrown by the

WCVal Const SLi st |t er <Type>and WCVal Const DLi st | t er <Type> objects. No
exceptions are enabled unless they are set by the except i ons member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate for the
constant list iterator classes. Setting those functions as private members in the derived class
is the standard mechanism to prevent them from being invoked.

int append(Type &);
int insert(Type &);

Public Member Functions
The following member functions are declared in the public interface:

WCVal Const SLi stlter();

WCVal Const SLi stlter(const WCVal SLi st <Type> &);

~WCVal Const SLi stlter();

WCVal ConstDLi stlter();

WCVal Const DLi stlter(const WCVal DLi st <Type> &);

~WCVal Const DLi stlter();

const WCVal SLi st <Type> *WCVal Const SLi st 1t er<Type>:: contai ner ()
const;

const WCVal DLi st <Type> *WCVal Const DLi st 1t er <Type>:: contai ner ()
const;

Type current() const;

void reset();

voi d WCVal Const SLi stlter<Type>::reset(const WCVal SLi st <Type>
&);

386 List Iterators

WCValConstSListlter<Type>, WCValConstDListlter<Type>

voi d WCVal Const DLi st | ter<Type>::reset(const WCVal DLi st <Type>
&);

Public Member Operators

The following member operators are declared in the public interface:
int operator ()();

i nt operator ++();

int operator +=(int);

In the iterators for double linked lists only:

int operator --();
int operator -=(int);

SeeAlso: WCVal SList::forAll,WVal DLi st::forAll

List Iterators 387

WCValConstSListlter<Type>::WCValConstSListlter()

Synopsis: #include <wclistit. h>
public:
WCVal Const SListlter();

Semantics: TheWCVal Const SLi st | t er public member function is the default constructor for the
class and initializes the iterator with no list to operate on. The r eset member function
must be called to provide the iterator with alist to iterate over.

Results: TheWCVal Const SLi st | t er public member function creates an initialized
WCVal Const SLi st |t er object.

SeeAlso: WCVal Const SLi stlter, ~WCVal Const SLi stlter, reset

388 List Iterators

WCValConstSListlter<Type>::WCValConstSListlter()

Synopsis:

Semantics:

Results:

See Also;

#include <wclistit. h>
public:
WCVal Const SLi stlter(const WCVal SLi st <Type> &);

TheWCVal Const SLi st | t er public member function is a constructor for the class. The

value passed as a parameter isa WCVal SLi st list object. Theiterator will beinitialized for
that list object and positioned before the first list element. To position the iterator to avalid

element within the list, increment it using any of the oper at or ++, operator (), or
oper at or += operators.

TheWCVal Const SLi st | t er public member function creates an initialized
WCVal Const SLi st |t er object positioned before the first element in the list.

~WCVal Const SLi stlter, operator (),operator ++, operator +=reset

List Iterators 389

WCValConstSListlter<Type>::~WCValConstSListlter()

Synopsis: #include <wclistit. h>
public:
~WCVal Const SLi stlter();

Semantics: The~WCVal Const SLi st |t er public member function is the destructor for the class.
The call to the ~WCVal Const SLi st 1t er public member function isinserted implicitly
by the compiler at the point where the WCVal Const SLi st |t er object goes out of scope.

Results: TheWCVal Const SLi st |t er object isdestroyed.

SeeAlso; WCVal Const SLi stlter

390 List Iterators

WCValConstDListlter<Type>::WCValConstDListlter()

Synopsis: #include <wclistit. h>
public:
WCVal ConstDLi stlter();

Semantics: TheWCVal Const DLi st | t er public member function is the default constructor for the
class and initializes the iterator with no list to operate on. The r eset member function
must be called to provide the iterator with alist to iterate over.

Results: TheWCVal Const DLi st | t er public member function creates an initialized
WCVal Const DLi st |t er object.

SeeAlso: WCVal Const DLi stlter, ~WCVal Const DLi stlter, reset

List Iterators 391

WCValConstDListlter<Type>::WCValConstDListlter()

Synopsis:

Semantics:

Results:

See Also;

#include <wclistit. h>
public:
WCVal Const DLi stlter(const WCVal DLi st <Type> &);

TheWCVal Const DLi st | t er public member function is a constructor for the class. The
value passed as a parameter isthe WCVal DLi st list object. Theiterator will beinitialized
for that list object and positioned before the first list element. To position the iterator to a
valid element within the list, increment it using any of the oper at or ++, oper at or
(), oroperator +=operators.

TheWCVal Const DLi st | t er public member function creates an initialized
WCVal Const DLi st |t er object positioned before the first list element.

WCVal Const DLi stlter, ~\WCVal ConstDLi stlter, operator (),
operator ++,operator += reset

392 List Iterators

WCValConstDListlter<Type>::~WCValConstDListlter()

Synopsis: #include <wclistit. h>
public:
~WCVal Const DLi stlter();

Semantics: The~WCVal Const DLi st |t er public member function is the destructor for the class.
The call to the ~WCVal Const DLi st 1t er public member function isinserted implicitly
by the compiler at the point where the WCVal Const DLi st |t er object goes out of scope.

Results: TheWCVal Const DLi st |t er object isdestroyed.

SeeAlso; WCVal Const DLi stlter

List Iterators 393

WCValConstSListlter<Type>WCValConstDListlter<Type>::container()

Synopsis: #include <wclistit. h>

public:

const WCVal SLi st <Type> *WCVal Const SLi st |t er <Type>:: cont ai ner ()
const ;

const WCVal DLi st <Type> *WCVal Const DLi st 1t er <Type>:: cont ai ner ()
const ;

Semantics. Thecont ai ner public member function returns a pointer to the list container object. If the
iterator has not been initialized with alist object, and the undef _i t er exceptionis
enabled, the exception is thrown.

Results: A pointer to the list object associated with the iterator is returned, or NULL(0) if the iterator
has not been initialized with alist.

SeeAlso: WCVal Const SLi stlter, WoVal Const DLi stlter, reset,
WCl t er Except : : undef _iter

394 List Iterators

WCValConstSListlter<Type>::current(), WCValConstDListlter<Type>::current()

Synopsis: #include <wclistit. h>
public:
Type current();

Semantics: Thecurrent public member function returns the value of the list element at the current
iterator position.

If theiterator is not associated with alist, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. In this
casetheundef _i t emexceptionisthrown, if enabled.

Results: The value at the current iterator element isreturned. If the current element is undefined, a
default initialized object is returned.

SeeAlso: operator (),operator ++, operator +=, operator --,operator -=,
reset,WCl t er Except:: undef _item

List Iterators 395

WCValConstSListlter<Type>WCValConstDListlter<Type>::operator ()()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int operator ()();

Theoper at or () public member function isthe call operator for the class. Thelist
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the list, the iterator is positioned after the end of the list.

Theoper at or () public member function has the same semantics as the pre-increment
operator, oper at or ++.

If the iterator was positioned before the first element in the list, the current item will be set to
thefirst element in thelist. If thelist is empty, the iterator will be positioned after the end of
thelist.

If the iterator is not associated with alist or the iterator position before the increment was
past the last element the list, the undef _i t er exception isthrown, if enabled.

Theoper at or () public member function returns anon-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator isincremented past the end of
thelist.

operator ++, operator += operator --,operator -=reset,
WCI t er Except: : undef _iter

396 List Iterators

WCValConstSListlter<Type>WCValConstDListlter<Type>::operator ++()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
i nt operator ++();

Theoper at or ++ public member function is the pre-increment operator for the class.

The list element which follows the current item is set to be the new current item. If the
previous current item was the last element in the list, the iterator is positioned after the end of
thelist.

Theoper at or ++ public member function has the same semantics as the call operator,
operator ().

If the iterator was positioned before the first element in the list, the current item will be set to
thefirst element in thelist. If thelist is empty, the iterator will be positioned after the end of
the list.

If theiterator is not associated with alist or the iterator position before the increment was
past the last element the list, the undef _i t er exception isthrown, if enabled.

Theoper at or ++ public member function returns a non-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator isincremented past the end of
thelist.

current,operator (),operator += operator --,operator -=reset,
WCI t er Except : : undef _iter

List Iterators 397

WCValConstSListlter<Type>WCValConstDListlter<Type>::operator +=()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int operator +=(int);

Theoper at or += public member function accepts an integer value that causes the iterator
to move that many elements after the current item. If the iterator was positioned before the
first element in the list, the operation will set the current item to be the given element in the
list.

If the current item was after the last element in the list previousto the iteration, and the
undef _i t er exception is enabled, the exception will be thrown. Attempting to increment
the iterator position more than element after the end of the list, or by less than one element
causesthei t er _r ange exception to be thrown, if enabled.

Theoper at or += public member function returns anon-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator isincremented past the end of
thelist.

current,operator (),operator ++ operator --,operator -=reset,
WCl t er Except::iter_range, WCI t er Except : : undef _i ter

398 List Iterators

WCValConstDListlter<Type>::operator --()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int operator --();

Theoper at or - - public member function is the pre-decrement operator for the class.
Thelist element previousto the current item is set to be the new current item. If the current
item was the first element in the list, the iterator is positioned before the first element in the
list. If thelistisempty, theiterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to
the last element.

If the iterator is not associated with alist or the iterator position previous to the decrement
was before the first element thelist, the undef _i t er exception isthrown, if enabled.

Theoper at or - - public member function returns anon-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator is decremented past the first
element of thelist.

current,operator (),operator ++ operator += operator -= reset,
WCI t er Except : : undef _iter

List Iterators 399

WCValConstDListlter<Type>::operator -=()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int operator -=(int);

Theoper at or - = public member function accepts an integer value that causes the iterator
to move that many elements before the current item. If the iterator was positioned after the
last element in the list, the operation will set the current item to be the given number of
elements from the end of the list.

If the current item was before the first element in the list previousto the iteration, and the
undef _i t er exception is enabled, the exception will be thrown. Attempting to decrement
the iterator position more than one element before the beginning of the list, or by less than
one element causesthe i t er _r ange exception to be thrown, if enabled.

Theoper at or - = public member function returns anon-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator is decremented past the first
element in thelist.

current,operator (),operator ++ operator += operator --,reset,
WCl t er Except::iter_range, WCI t er Except : : undef _i ter

400 List Iterators

WCValConstSListlter<Type>::reset(), WCValConstDListlter<Type>::reset()

Synopsis: #include <wclistit. h>
public:
void reset();

Semantics: Ther eset public member function resets the iterator to theinitial state, positioning the
iterator before the first element in the associated list.

Results: The iterator is positioned before the first list element.

SeeAlso; WCVal Const SLi st lter, WCVal Const DLi st |t er, cont ai ner

List Iterators 401

WCValConstSListlter<Type>::reset(), WCValConstDListlter<Type>::reset()

Synopsis: #include <wclistit. h>
public:
voi d WCVal Const SLi stlter<Type>::reset(const WCVal SLi st <Type>
&);
voi d WCVal Const DLi st | ter<Type>::reset(const WCVal DLi st <Type>
&);

Semantics. Ther eset public member function resets the iterator to operate on the specified list. The
iterator is positioned before the first element in the list.

Results: Theiterator is positioned before the first element of the specified list.

See Also: WCVal Const SLi st ter, WCVal Const DLi stlter, cont ai ner

402 List Iterators

WCValSListlter<Type>, WCValDListlter<Type>

Declared:

welistit.h

TheWCVal SLi st |t er <Type>and WCVal DLi st | t er <Type> classesarethe
templated classes used to create iterator objects for single and double linked list objects.
These classes can be used only for non-constant lists. The

WCVal DConst Li st It er <Type>and WCVal SConst Li st 1t er <Type> classesare
provided to iterate over constant lists.

In the description of each member function, the text Type isused to indicate the list element
type specified as the template parameter.

TheWCl t er Except classisabase class of the WCVal SLi st |t er <Type> and

WCVal DLi st |t er <Type> classes and providesthe except i ons member function.
This member function controls the exceptions which can be thrown by the

WCVal SLi st It er<Type>and WCVal DLi st |t er <Type> objects. No exceptions are
enabled unless they are set by the except i ons member function.

Private Member Functions

Some functionality supported by base classes of the iterator are not appropriate in the single
linked list iterator classes. Setting those functions as private membersin the derived classis
the standard mechanism to prevent them from being invoked. The following member
functions are declared in the single linked list iterator private interface:

int operator --();
int operator -=(int);
int insert(Type &);

Public Member Functions
The following member functions are declared in the public interface:

WCVal SListlter();

WCVal SLi stlter(WCVal SLi st <Type> &);

~WCVal SListlter();

WCVal DLi stlter();

WCVal DLi stlter(WCVal DLi st <Type> &);

~WCVal DLi stlter();

i nt append(Type &);

WCVal SLi st <Type> *WCVal SLi stlter<Type>::container() const;
WCVal DLi st <Type> *WCVal DLi stlter<Type>::container() const;
Type current() const;

void reset();

voi d WCVal SLi stlter<Type>::reset(WCVal SLi st <Type> &);
voi d WCVal DLi stlter<Type>::reset(WCVal DLi st <Type> &);

List Iterators 403

WCValSListlter<Type>, WCValDListlter<Type>

See Also;

In theiterators for double linked lists only:

int insert(Type &);

Public Member Operators

The following member operators are declared in the public interface:
int operator ()();

i nt operator ++();

int operator +=(int);

In the iterators for double linked lists only:

int operator --();
int operator -=(int);

WCVal SList::forAll,WVal DLi st::forAll

Sample Program Using Value List Iterators

404 List Iterators

WCValSListlter<Type>, WCValDListlter<Type>

#i nclude <wclistit. h>
#i ncl ude <i ostream h>

/1

/1 insert elemafter all elenments in the list less than or equal to
Il elem

/1

void insert _in_order(WVal DList<int> & ist, int elem) {
if(list.entries() == 0) {
// cannot insert in an enpty list using a iterator
list.insert(elem);
} else {

WCVal DLi stlter<int> iter(list);
while(++iter) {
if(iter.current() > elem) {
Il insert elembefore first element in |list greater
/1 than el em
iter.insert(elem);
return;

}

Il iterated past the end of the list
/1 append elemto the end of the Iist
|'ist.append(elem);

void main() {
WCVal DLi st<int> |ist;

insert _in_order(list, 5);
insert _in_order(list, 20);
insert in_order(list, 1);
insert _in_order(list, 25);

cout << "List elenents in ascending order:\n";
WCVal DListlter<int> iter(list);
while(++iter) {

cout << iter.current() << "\n";
}
cout << "List elenments in descending order\n";
/1 iterator is past the end of the list

while(--iter) {
cout << iter.current() << "\n";
}

List Iterators 405

WCValSListlter<Type>::WCValSListlter()

Synopsis: #include <wclistit. h>
public:
WCVal SListlter();

Semantics: TheWCVal SLi st | t er public member function is the default constructor for the class and
initializes the iterator with no list to operate on. The r eset member function must be called
to provide the iterator with alist to iterate over.

Results: TheWCVal SLi st | t er public member function createsaninitialized WCVal SLi st 1t er
object.

SeeAlso: WCVal SListlter, ~WCVal SLi stlter,reset

406 List Iterators

WCValSListlter<Type>::WCValSListlter()

Synopsis:

Semantics:

Results:

See Also;

#include <wclistit. h>
public:
WCVal SLi stlter(WCVal SLi st <Type> &);

TheWCVal SLi st | t er public member function is a constructor for the class. The value
passed as a parameter isa WCVal SLi st list object. Theiterator will beinitialized for that
list object and positioned before the first list element. To position the iterator to avalid
element within the list, increment it using any of the oper at or ++, operator (), or
oper at or += operators.

The WCVal SLi st |t er public member function creates an initialized WCVal SLi st 1t er
object positioned before the first element in thelist.

~WCVal SLi stlter,operator (),operator ++, operator +=reset

List Iterators 407

WCValSListlter<Type>::~WCValSListlter()

Synopsis: #include <wclistit. h>
public:
~WCVal SListlter();

Semantics: The~WCVal SLi st 1t er public member function is the destructor for the class. The call to
the ~\WWCVal SLi st | t er public member function isinserted implicitly by the compiler at
the point where the WCVal SLi st | t er object goes out of scope.

Results: TheWCVal SLi st | t er object isdestroyed.

SeeAlso; WCVal SLi stlter

408 List Iterators

WCValDListlter<Type>::WCValDListlter()

Synopsis:

Semantics:

Results:

See Also;

#include <wclistit. h>
public:
WCVal DLi stlter();

TheWCVal DLi st | t er public member function is the default constructor for the class and
initializes the iterator with no list to operate on. The r eset member function must be called
to provide the iterator with alist to iterate over.

The WCVal DLi st |t er public member function createsan initialized WCVal DLi st |1t er
object.

WCVal DLi stlter,~WCVal DLi stlter,reset

List Iterators 409

WCValDListlter<Type>::WCValDListlter()

Synopsis:

Semantics:

Results:

See Also;

#include <wclistit. h>
public:
WCVal DLi stlter(WCVal DLi st <Type> &);

TheWCVal DLi st | t er public member function is a constructor for the class. The value
passed as a parameter isthe WCVal DLi st list object. Theiterator will beinitialized for that
list object and positioned before the first list element. To position the iterator to avalid
element within the list, increment it using any of the oper at or ++, operator (), or
oper at or += operators.

The WCVal DLi st |t er public member function creates an initialized WCVal DLi st 1t er
object positioned before the first list element.

WCVal DLi stlter,~WCVal DLi stlter,operator (),operator ++,
operator += reset

410 List Iterators

WCValDListlter<Type>::~WCValDListlter()

Synopsis: #include <wclistit. h>
public:
~WCVal DLi stlter();

Semantics: The~WCVal DLi st 1t er public member function is the destructor for the class. The call to
the ~\WWCVal DLi st | t er public member function isinserted implicitly by the compiler at
the point where the WCVal DLi st | t er object goes out of scope.

Results: TheWCVal DLi st | t er object isdestroyed.

SeeAlso: WCVal DLi stlter

List Iterators 411

WCValSListlter<Type>::append(), WCValDListlter<Type>::append()

Synopsis: #include <wclistit. h>
public:
i nt append(Type &);

Semantics: Theappend public member function inserts a new element into the list container object.
The new element is inserted after the current iterator item.

If theiterator is not associated with alist, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. The
element is not appended. If the undef _i t er exception isenabled, it isthrown.

If the append fails, the out _of _nmenor y exception isthrown, if enabled in thelist being
iterated over. Thelist remains unchanged.

Results: The new element isinserted after the current iterator item. A TRUE value (non-zero) is
returned if the append is successful. A FALSE (zero) result is returned if the append fails.

SeeAlso: insert, WCExcept: :out _of _nenory, WCI t er Except : : undef _iter

412 List Iterators

WCValSListlter<Type>WCValDListlter<Type>::container()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>

public:

WCVal SLi st <Type> *WCVal SLi stlter<Type>::container() const;
WCVal DLi st <Type> *WCVal DLi stlter<Type>::container() const;

Thecont ai ner public member function returns a pointer to the list container object. If the
iterator has not been initialized with alist object, and the undef _i t er exceptionis
enabled, the exception is thrown.

A pointer to the list object associated with the iterator is returned, or NULL(O) if the iterator
has not been initialized with alist.

WCVal SLi st lter, WCVal DLi stlter,reset, WCI t er Except:: undef _iter

List Iterators 413

WCValSListlter<Type>::current(), WCValDListlter<Type>::current()

Synopsis: #include <wclistit. h>
public:
Type current();

Semantics: Thecurrent public member function returns the value of the list element at the current
iterator position.

If theiterator is not associated with alist, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. In this
casetheundef _i t emexceptionisthrown, if enabled.

Results: The value at the current iterator element isreturned. If the current element is undefined, a
default initialized object is returned.

SeeAlso: operator (),operator ++, operator +=,operator --,operator -=
reset,WCl t er Except:: undef _item

414 List Iterators

WCValDListlter<Type>::insert()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int insert(Type &);

Thei nsert public member function inserts a new element into the list container object.
The new element isinserted before the current iterator item. This process uses the previous
link in the double linked list, sothe i nsert public member function is not allowed with
single linked lists.

If the iterator is not associated with alist, or the iterator position is either before the first
element or past the last element in the list, the current iterator position is undefined. The
element is not inserted. If the undef _i t er exception is enabled, the exception is thrown.

If theinsert fails and the out _of _nmenory exception is enabled in the list being iterated
over, the exception isthrown. The list remains unchanged.

The new element isinserted before the current iterator item. A TRUE value (non-zero) is
returned if the insert is successful. A FALSE (zero) result isreturned if the insert fails.

append, WCExcept : : out _of _nenory, WCI t er Except : : undef _i ter

List Iterators 415

WCValSListlter<Type> WCValDListlter<Type>::operator ()()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int operator ()();

Theoper at or () public member function isthe call operator for the class. Thelist
element which follows the current item is set to be the new current item. If the previous
current item was the last element in the list, the iterator is positioned after the end of the list.

Theoper at or () public member function has the same semantics as the pre-increment
operator, oper at or ++.

If the iterator was positioned before the first element in the list, the current item will be set to
thefirst element in thelist. If thelist is empty, the iterator will be positioned after the end of
thelist.

If the iterator is not associated with alist or the iterator position before the increment was
past the last element the list, the undef _i t er exception isthrown, if enabled.

Theoper at or () public member function returns anon-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator isincremented past the end of
thelist.

operator ++, operator += operator --,operator -=reset,
WCI t er Except: : undef _iter

416 List Iterators

WCValSListlter<Type>WCValDListlter<Type>::operator ++()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
i nt operator ++();

Theoper at or ++ public member function is the pre-increment operator for the class.

The list element which follows the current item is set to be the new current item. If the
previous current item was the last element in the list, the iterator is positioned after the end of
thelist.

Theoper at or ++ public member function has the same semantics as the call operator,
operator ().

If the iterator was positioned before the first element in the list, the current item will be set to
thefirst element in thelist. If thelist is empty, the iterator will be positioned after the end of
the list.

If theiterator is not associated with alist or the iterator position before the increment was
past the last element the list, the undef _i t er exception isthrown, if enabled.

Theoper at or ++ public member function returns a non-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator isincremented past the end of
thelist.

current,operator (),operator += operator --,operator -=reset,
WCI t er Except : : undef _iter

List Iterators 417

WCValSListlter<Type>WCValDListlter<Type>::operator +=()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int operator +=(int);

Theoper at or += public member function accepts an integer value that causes the iterator
to move that many elements after the current item. If the iterator was positioned before the
first element in the list, the operation will set the current item to be the given element in the
list.

If the current item was after the last element in the list previousto the iteration, and the
undef _i t er exception is enabled, the exception will be thrown. Attempting to increment
the iterator position more than element after the end of the list, or by less than one element
causesthei t er _r ange exception to be thrown, if enabled.

Theoper at or += public member function returns anon-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator isincremented past the end of
thelist.

current,operator (),operator ++ operator --,operator -=reset,
WCl t er Except::iter_range, WCI t er Except : : undef _i ter

418 List Iterators

WCValDListlter<Type>::operator --()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int operator --();

Theoper at or - - public member function is the pre-decrement operator for the class.
Thelist element previousto the current item is set to be the new current item. If the current
item was the first element in the list, the iterator is positioned before the first element in the
list. If thelistisempty, theiterator will be positioned before the start of the list.

If the iterator was positioned after the last element in the list, the current item will be set to
the last element.

If the iterator is not associated with alist or the iterator position previous to the decrement
was before the first element thelist, the undef _i t er exception isthrown, if enabled.

Theoper at or - - public member function returns anon-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator is decremented past the first
element of thelist.

current,operator (),operator ++ operator += operator -= reset,
WCI t er Except : : undef _iter

List Iterators 419

WCValDListlter<Type>::operator -=()

Synopsis:

Semantics:

Results:

See Also:

#include <wclistit. h>
public:
int operator -=(int);

Theoper at or - = public member function accepts an integer value that causes the iterator
to move that many elements before the current item. If the iterator was positioned after the
last element in the list, the operation will set the current item to be the given number of
elements from the end of the list.

If the current item was before the first element in the list previousto the iteration, and the
undef _i t er exception is enabled, the exception will be thrown. Attempting to decrement
the iterator position more than one element before the beginning of the list, or by less than
one element causesthe i t er _r ange exception to be thrown, if enabled.

Theoper at or - = public member function returns anon-zero value if the iterator is
positioned on alist item. Zero(0) is returned when the iterator is decremented past the first
element in thelist.

current,operator (),operator ++ operator += operator --,reset,
WCl t er Except::iter_range, WCI t er Except : : undef _i ter

420 List Iterators

WCValSListlter<Type>::reset(), WCValDListlter<Type>::reset()

Synopsis: #include <wclistit. h>
public:
void reset();

Semantics: Ther eset public member function resets the iterator to theinitial state, positioning the
iterator before the first element in the associated list.

Results: The iterator is positioned before the first list element.

SeeAlso: WCVal SLi stlter, WoVal DLi stlter, contai ner

List Iterators 421

WCValSListlter<Type>::reset(), WCValDListlter<Type>::reset()

Synopsis: #include <wclistit. h>
public:
voi d WCVal SLi stlter<Type>::reset(WCVal SLi st <Type> &);
voi d WCVal DLi stlter<Type>::reset(WCVal DLi st <Type> &);

Semantics. Ther eset public member function resets the iterator to operate on the specified list. The
iterator is positioned before the first element in the list.

Results: Theiterator is positioned before the first element of the specified list.

SeeAlso: WCVal SLi stlter, WVal DLi stlter, contai ner

422 List Iterators

14 Queue Container

Queue containers maintain an ordered collection of datawhich isretrieved in the order in
which the data was entered into the queue. The queue classisimplemented as atemplated
class, allowing the use of any data type as the queue data.

A second template parameter specifies the storage class used to implement the queue. The
WCVal SLi st, WCl svSLi st and WCPt r SLi st classes are appropriate storage classes.

Queue Container 423

WCQueue<Type,FType>

Declared: wcqueue. h

The WCQueue<Type, FType> classisatemplated class used to create objects which
maintain data in a queue.

In the description of each member function, the text Type is used to indicate the template
parameter defining the type of the elements stored in the queue. Thetext FType isused to
indicate the template parameter defining the storage class used to maintain the queue.

For example, to create a queue of integers, the WCQueue<i nt , WCVal SLi st <i nt > >
classcan beused. The WCQueue<i nt *, WCPt r SLi st <i nt > > classwill createa
gueue of pointersto integers. To create an intrusive queue of objects of typeisv_link
(derived from the WCSLi nk class), the WCQueue<isv_link *, WCI svSLi st <isv_link >
> class can be used.

The WCEXxcept classisabase class of the WCQueue<Type, FType> class and provides
theexcept i ons member function. This member function controls the exceptions which
can be thrown by the WCQueue<Type, FType> object. No exceptions are enabled unless
they are set by the except i ons member function.

Requirements of Type
Type must provide any constructors and/or operators required by the FType class.
Public Member Functions

The following member functions are declared in the public interface:

WCQueue() ;

WCQueue(void *(*)(size_t), void (*)(void *, size_t));
~WCQueue() ;

void clear();

int entries() const;

Type first() const;

Type get();

int insert(const Type &);

int isEnpty() const;

Type last() const;

Sample Program Using a Queue

#i ncl ude <wcqueue. h>
#i ncl ude <i ostream h>

mai n() {
WCQueue<i nt, WCval SLi st <i nt> > gueue

424 Queue Container

WCQueue<Type,FType>

queue.insert(7);

queue.insert(8);

queue.insert(9);

gqueue.insert(10);

cout << "\ nNunber of queue entries: " << queue.entries() << "\n";

cout << "First entry = [" << queue.first() << "]\n";
cout << "Last entry = [" << queue.last() << "]\n";
whi |l e(!'queue.isEmty()) {

cout << queue.get() << "\n";

cout . f1ush();

Queue Container 425

WCQueue<Type,FType>::WCQueue()

Synopsis. #i ncl ude <wcqueue. h>
public:
WCQueue() ;

Semantics: The public WCQueue<Type, FType> constructor creates an empty
WCQueue<Type, FType> object. The FType storage class constructor performs the
initialization.

Results: The public WCQueue<Type, FType> constructor creates an initialized
WCQueue<Type, FType> object.

SeeAlso: ~WCQueue<Type, FType>

426 Queue Container

WCQueue<Type,FType>::WCQueue()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcqueue. h>

public:

WCQueue(void *(*allocator)(size_t),
void (*deal locator)(void *, size_t));

The public WCQueue<Type, FType> constructor creates an empty

WCQueue<Type, FType> object. If FType iseither the WCVal SLi st or WCPt r SLi st
class, then the allocator function is registered to perform all memory allocations of the queue
elements, and the deallocator function to perform all freeing of the queue elements’ memory.
The allocator and deallocator functions areignored if FType isthe WCI svSLi st class.
These functions provide the ability to control how the allocation and freeing of memory is
performed, allowing for more efficient memory handling than the general purpose global
operator new() and oper at or del et e() canprovide. Memory management
optimizations may potentially be made through the allocator and deallocator functions, but
are not recommended before managing memory is understood and determined to be worth
while.

The allocator function shall return a pointer to allocated memory of size at least the
argument, or zero(0) if the allocation cannot be performed. Initialization of the memory
returned is performed by the WCQueue<Type, FType> class.

The WCQueue<Type, FType> class cals the deallocator function only on memory
allocated by the allocator function. The deallocator shall free the memory pointed to by the
first argument which is of size the second argument. The size passed to the deallocator
function is guaranteed to be the same size passed to the allocator function when the memory
was alocated.

The allocator and deallocator functions may assume that for alist object instance, the
allocator is always called with the same first argument (the size of the memory to be
allocated). If FType isthe WCVal SLi st <Type> class, then the

WCVal SLi stltentsi ze(Type) macro returns the size of the elements which are
allocated by the allocator function. Similarly, the WCPt r SLi st | t ensi ze(Type)
macro returnsthe size of WCPt r SLi st <Type> elements.

The FType storage class constructor performs the initialization of the queue.

The public WCQueue<Type, FType> constructor creates an initialized
WCQueue<Type, FType> object and registers the allocator and deallocator functions.

WCQueue<Type, FType>, ~WCQueue<Type, FType>

Queue Container 427

WCQueue<Type,FType>::~WCQueue()

Synopsis. #i ncl ude <wcqueue. h>
public:
virtual ~WCQueue();

Semantics: The public ~\WCQueue<Type, FType> destructor destroys the
WCQueue<Type, FType> object. The FType storage class destructor performs the
destruction. The call to the public ~WCQueue<Type, FType> destructor isinserted
implicitly by the compiler at the point where the WCQueue<Type, FType> object goes out
of scope.

If the not _enpt y exception is enabled, the exception is thrown if the queue is not empty of
gueue elements.

Results: The WCQueue<Type, FType> object is destroyed.

SeeAlso: WCQueue<Type, FType>, cl ear, WCExcept : : not _enpty

428 Queue Container

WCQueue<Type,FType>::clear()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcqueue. h>
public:
void clear();

Thecl ear public member function is used to clear the queue object and set it to the state of
the object just after theinitial construction. The queue object is not destroyed and re-created
by this operator, so the object destructor is not invoked. The queue elements are not cleared
by the queue class. However, the class used to maintain the queue, FType, may clear the
items as part of the clear function for that class. If it does not clear the items, any queue
items gtill in thelist are lost unless pointed to by some pointer object in the program code.

Thecl ear public member function resets the queue object to the state of the object
immediately after theinitial construction.

~WCQueue<Type, FType>, i SEnpty

Queue Container 429

WCQueue<Type,FType>::entries()

Synopsis. #i ncl ude <wcqueue. h>
public:
int entries() const;

Semantics: Theent ri es public member function is used to determine the number of queue elements
contained in the list object.

Results: The number of elementsin the queueis returned. Zero(0) isreturned if there are no queue
elements.

SeeAlso: i sEmpty

430 Queue Container

WCQueue<Type,FType>::first()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcqueue. h>
public:
Type first() const;

Thef i r st public member function returns a queue el ement from the beginning of the
gueue object. The queue element is not removed from the queue.

If the queue is empty, one of two exceptions can be thrown. If the enpt y _cont ai ner
exception is enabled, then it will be thrown. Otherwise, the i ndex _r ange exception will
be thrown, if enabled.

Thefirst queue element isreturned. If there are no elementsin the queue, the return valueis
determined by the f i nd member function of the FType class.

get,i seEnpty, | ast, WCExcept : : enpty cont ai ner,
WCExcept : : i ndex_range, FType: : find

Queue Container 431

WCQueue<Type,FType>::get()

Synopsis. #i ncl ude <wcqueue. h>
public:
Type get();

Semantics: Theget public member function returns the queue element which was first inserted into the
gueue object. The queue element is also removed from the queue.

If the queue is empty, one of two exceptions can be thrown. If the enpt y _cont ai ner
exception is enabled, then it will be thrown. Otherwise, the i ndex _r ange exception will
be thrown, if enabled.

Results: Thefirst element in the queue is removed and returned. If there are no elementsin the
gueue, the return value is determined by the get member function of the FType class.

SeeAlso: first,insert,isEnpty, WCExcept: : enpty _cont ai ner,
WCExcept : : i ndex_range, FType: : get

432 Queue Container

WCQueue<Type,FType>::insert()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcqueue. h>
public:
int insert(const Type &);

Thei nsert public member function is used to insert the data into the queue. 1t will be the
last element in the queue, and the last to be retrieved.

If theinsert fails, the out _of _menory exception will be thrown, if enabled. The queue
will remain unchanged.

The queue element isinserted at the end of the queue. A TRUE value (non-zero) is returned
if theinsert is successful. A FALSE (zero) result is returned if the insert fails.

get , WCExcept : : out _of _nmenory

Queue Container 433

WCQueue<Type,FType>::isEmpty()

Synopsis. #i ncl ude <wcqueue. h>
public:
int iseEnpty() const;

Semantics: Thei sEnpt y public member function is used to determine if a queue object has any queue
elements contained in it.

Results: A TRUE value (non-zero) is returned if the queue object does not have any queue elements
contained within it. A FALSE (zero) result isreturned if the queue contains at least one
element.

See Also; entries

434 Queue Container

WCQueue<Type,FType>::last()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcqueue. h>
public:
Type last() const;

Thel ast public member function returns a queue element from the end of the queue object.
The queue element is not removed from the queue.

If the queue is empty, one of two exceptions can be thrown. If the enpt y _cont ai ner
exception is enabled, then it will be thrown. Otherwise, the i ndex _r ange exception will
be thrown, if enabled.

Thelast queue element is returned. If there are no elementsin the queue, the return valueis
determined by the f i nd member function of the FType class.

first,get,i sEnpty, WCExcept:: enpty _cont ai ner,
WCExcept : : i ndex_range, FType: : find

Queue Container 435

WCQueue<Type,FType>::last()

436 Queue Container

15 sSkip List Containers

This chapter describes skip list containers.

Skip List Containers 437

WCPtrSkipListDict<Key,Value>

Declared: wcski p. h

The WCPt r Ski pLi st Di ct <Key, Val ue> classis atemplated class used to store objects
inadictionary. Dictionaries store values with an associated key, which may be of any type.
One example of adictionary used in everyday life is the phone book. The phone numbers
are the data values, and the customer name isthe key. The equality operator of the key’s
typeis used to locate the key-value pairs.

In the description of each member function, the text Key is used to indicate the template
parameter defining the type of the indices pointed to by the pointers stored in the dictionary.
Thetext Val ue isused to indicate the template parameter defining the type of the data
pointed to by the pointers stored in the dictionary.

Note that pointersto the key values are stored in the dictionary. Destructors are not called on
the keys pointed to. The key values pointed to in the dictionary should not be changed such
that the equivalence to the old value is modified.

Theiterator classes for skip lists have the same function and operator interface as the hash
iterators classes. See the chapter on hash iterators for more information.

The WCEXcept classisabase class of the WCPt r Ski pLi st Di ct <Key, Val ue> class
and providesthe except i ons member function. This member function controls the
exceptions which can be thrown by the WCPt r Ski pLi st Di ct <Key, Val ue> object. No
exceptions are enabled unless they are set by the except i ons member function.
Requirements of Key

The WCPt r Ski pLi st Di ct <Key, Val ue> classrequires Key to have:

A well defined equivalence operator with constant parameters
(int operator ==(const Key &) const).

A well defined operator less than with constant parameters
(int operator <(const Key &) const).

Public Member Functions

The following member functions are declared in the public interface:

WCPt r Ski pLi st Di ct (unsi gned = WCSKi pLi st Di ct _PROB_QUARTER,
unsi gned = WCDEFAULT_SKI PLI ST_MAX_PTRS) ;

WCPt r Ski pLi st Di ct (unsi gned = WCSKi pLi st Di ct _PROB_QUARTER,
unsi gned = WCDEFAULT_SKI PLI ST_MAX_PTRS, void * (*user _alloc)(

438 Skip List Containers

WCPtrSkipListDict<Key,Value>

size_t size), void (*user_dealloc)(void *old, size_t size)
);

WCPt r Ski pLi st Di ct (const WCPtrSkipListDict &);

virtual ~WCPtrSkipListDict();

void clear();

voi d cl ear AndDest roy();

int contains(const Key *) const;

unsi gned entries() const;

Value * find(const Key *) const;

Val ue * findKeyAndVval ue(const Key *, Key * &) const;

void forAll(void (*user_fn)(Key *, Value *, void *), void *
)

int insert(Key *, Value *);

int isEnpty() const;

Val ue * renove(const Key *);

Public Member Operators

The following member operators are declared in the public interface:
Val ue * & operator [](const Key *);

Val ue * const & operator [](const Key *) const;

WCPt r Ski pLi stDict & operator =(const WCPtrSkipListDict &);
int operator ==(const WCPtrSkipListDict &) const;

Skip List Containers 439

WCPtrSkipListDict<Key,Value>::WCPtrSkipListDict()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>

public:

WCPt r Ski pLi st Di ct (unsi gned = WCSKI PLI ST_PROB_QUARTER,
unsi gned = WCDEFAULT_SKI PLI ST_MAX_PTRS) ;

The public WCPt r SKki pLi st Di ct <Key, Val ue> constructor creates an

WCPt r Ski pLi st Di ct <Key, Val ue> object with no entries. Thefirst optional
parameter, which defaults to the constant WCSKI PLI ST_PROB_QUARTER, determinesthe
probability of having a certain number of pointersin each skip list node. The second
optional parameter, which defaults to the constant WCDEFAULT _SKI PLI ST_MAX_PTRS,
determines the maximum number of pointers that are allowed in any skip list node.
WCDEFAULT _SKI PLI ST_MAX_PTRS is the maximum effective value of the second
parameter. If an allocation failure occurs while creating the skip list, the out _of _menory
exception isthrown if the out _of _nmenor y exception is enabled.

The public WCPt r SKki pLi st Di ct <Key, Val ue> constructor creates an initialized
WCPt r Ski pLi st Di ct <Key, Val ue> object.

~WCPt r Ski pLi st Di ct <Key, Val ue>, WCExcept : : out _of _nenory

440 Skip List Containers

WCPtrSkipListDict<Key,Value>::WCPtrSkipListDict()

Synopsis. #i ncl ude <wcski p. h>
public:
WCPt r Ski pLi st Di ct (unsi gned = WCSKI PLI ST_PROB_QUARTER,
unsi gned = WCDEFAULT _SKI PLI ST_MAX_PTRS,
void * (*user_alloc)(size_t),
void (*user _dealloc)(void *, size_t));

Semantics. Allocator and deallocator functions are specified for use when entries are inserted and
removed from the list dictionary. The semantics of this constructor are the same asthe
constructor without the memory management functions.

The allocation function must return azero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Y our allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of alist dictionary. To
determine the size of the objects that the memory management functions will be required to
allocate and free, the following macro may be used:

WCPt r Ski pLi stDi ctltenti ze(Key, Value, num.of _pointers)

Results: The public WCPt r Ski pLi st Di ct <Key, Val ue> constructor creates an initialized
WCPt r Ski pLi st Di ct <Key, Val ue> object.

SeeAlso: ~WCPt r Ski pLi st Di ct <Key, Val ue>, WCExcept : : out _of nenory

Skip List Containers 441

WCPtrSkipListDict<Key,Value>::WCPtrSkipListDict()

Synopsis. #i ncl ude <wcski p. h>
public:
WCPt r Ski pLi stDi ct (const WCPtrSkipListDict &);

Semantics: The public WCPt r Ski pLi st Di ct <Key, Val ue> constructor isthe copy constructor for
the WCPt r Ski pLi st Di ct <Key, Val ue> class. The new skip list is created with the
same probability and maximum pointers, all values or pointers stored in thelist, and the
exception trap states. If thereis not enough memory to copy all of the values, then only
some will be copied, and the number of entries will correctly reflect the number copied. If
all of the elements cannot be copied, then the out _of _nmenory exceptionisthrown if itis
enabled.

Results: The public WCPt r Ski pLi st Di ct <Key, Val ue> constructor creates an
WCPt r Ski pLi st Di ct <Key, Val ue> object which is acopy of the passed dictionary.

SeeAlso: operator =, WCExcept::out of nenory

442 Skip List Containers

WCPtrSkipListDict<Key,Value>::~WCPtrSkipListDict()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>
public:
virtual ~WCPtrSkipListDict();

The public ~\WWCPt r Ski pLi st Di ct <Key, Val ue> destructor isthe destructor for the
WCPt r Ski pLi st Di ct <Key, Val ue> class. If the number of dictionary elementsis not
zero and the not _enpt y exception is enabled, the exception isthrown. Otherwise, the
dictionary elements are cleared using the cl ear member function. The objects which the
dictionary elements point to are not deleted unlessthe cl ear AndDest r oy member
function is explicitly called before the destructor is called. The call to the public

~WCPt r Ski pLi st Di ct <Key, Val ue> destructor isinserted implicitly by the compiler
at the point where the WCPt r Ski pLi st Di ct <Key, Val ue> object goes out of scope.

The public ~WCPt r Ski pLi st Di ct <Key, Val ue> destructor destroys an
WCPt r Ski pLi st Di ct <Key, Val ue> object.

cl ear, cl ear AndDest r oy, WCEXcept : : not _enpty

Skip List Containers 443

WCPtrSkipListDict<Key,Value>::clear()

Synopsis. #i ncl ude <wcski p. h>
public:
void clear();

Semantics: Thecl ear public member function is used to clear the dictionary so that it has no entries.
Objects pointed to by the dictionary elements are not deleted. The dictionary object is not
destroyed and re-created by this function, so the object destructor is not invoked.

Results: The cl ear public member function clears the dictionary to have no elements.

SeeAlso: ~WCPt r Ski pLi st Di ct <Key, Val ue>, cl ear AndDest r oy, operator =

444 Skip List Containers

WCPtrSkipListDict<Key,Value>::clearAndDestroy()

Synopsis. #i ncl ude <wcski p. h>
public:
voi d cl ear AndDest roy();

Semantics: Thecl ear AndDest r oy public member function is used to clear the dictionary and delete
the objects pointed to by the dictionary elements. The dictionary object is not destroyed and
re-created by this function, so the dictionary object destructor is not invoked.

Results: Thecl ear AndDest r oy public member function clears the dictionary by deleting the
objects pointed to by the dictionary elements.

See Also; cl ear

Skip List Containers 445

WCPtrSkipListDict<Key,Value>::contains()

Synopsis. #i ncl ude <wcski p. h>
public:
int contains(const Key *) const;

Semantics: Thecont ai ns public member function returns non-zero if an element with the specified
key is stored in the dictionary, or zero if there is no equivalent element. Note that
equivalenceis based on the equivalence operator of the Key type.

Results: The cont ai ns public member function returns a non-zero value if the Key isfound in the
dictionary.

SeeAlso: find,findKeyAndVal ue

446 Skip List Containers

WCPtrSkipListDict<Key,Value>::entries()

Synopsis. #i ncl ude <wcski p. h>
public:
unsi gned entries() const;

Semantics: Theent ri es public member function is used to return the current number of elements
stored in the dictionary.

Results: Theent ri es public member function returns the number of elementsin the dictionary.

SeeAlso: i sEnmpty

Skip List Containers 447

WCPtrSkipListDict<Key,Value>::find()

Synopsis. #i ncl ude <wcski p. h>
public:
Val ue * find(const Key *) const;

Semantics: Thef i nd public member function is used to find an element with an equivalent key in the
dictionary. If an equivalent element isfound, a pointer to the element Val ue isreturned.
Zeroisreturned if the element is not found. Note that equivalence is based on the
equivalence operator of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

SeeAlso: findKeyAndVal ue

448 Skip List Containers

WCPtrSkipListDict<Key,Value>::findKeyAndValue()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>
public:
Val ue * findKeyAndVval ue(const Key *, Key * &) const;

Thef i ndKeyAndVal ue public member function is used to find an element in the
dictionary with an key equivalent to the first parameter. 1f an equivalent element isfound, a
pointer to the element Val ue isreturned. The referenceto a Key passed as the second
parameter is assigned the found element’skey. Zeroisreturned if the element is not found.
Note that equivalence is based on the equivalence operator of the Key type.

The element equivalent to the passed key is located in the dictionary.

fi ndkeyAndVal ue

Skip List Containers 449

WCPtrSkipListDict<Key,Value>::forAll()

Synopsis. #i ncl ude <wcski p. h>
public:
void forAll(
void (*user _fn)(Key *, Value *, void *),
void *);

Semantics: Thef or Al | public member function causes the user supplied function to be invoked for
every key-value pair in the dictionary. The user function has the prototype

voi d user func(Key * key, Value * value, void * data);

Asthe elements are visited, the user function isinvoked with the Key and Val ue
components of the element passed as the first two parameters. The second parameter of the
forAll functionis passed asthe third parameter to the user function. This value can be
used to pass any appropriate data from the main code to the user function.

Results: The elementsin the dictionary are al visited, with the user function being invoked for each
one.

SeeAlso: find,findKeyAndVal ue

450 Skip List Containers

WCPtrSkipListDict<Key,Value>::insert()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <weski p. h>
public:
int insert(Key *, Value *);

Thei nsert public member function inserts akey and value into the dictionary. If
allocation of the node to store the key-value pair fails, then the out _of _menory exception
isthrown if it isenabled. If the exception is not enabled, the insert will not be compl eted.

Thei nsert public member function inserts akey and value into the dictionary. If the
insert is successful, anon-zero will returned. A zero will be returned if the insert fails.

operat or =, WCExcept :: out _of _nmenory

Skip List Containers 451

WCPtrSkipListDict<Key,Value>::isEmpty()

Synopsis. #i ncl ude <wcski p. h>
public:
int iseEnpty() const;
Semantics: Thei sEnpt y public member function is used to determine if the dictionary is empty.

Results: Thei sEnpt y public member function returns zero if it contains at least one entry, non-zero
if the dictionary is empty.

See Also: entries

452 Skip List Containers

WCPtrSkipListDict<Key,Value>::operator []()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>
public:
Val ue * & operator[](const Key *);

operat or [] isthedictionary index operator. A reference to the object stored in the
dictionary with the given Key isreturned. If no equivalent element isfound, then a new
key-value pair is created with the specified Key value, and initialized with the default
constructor. The returned reference can then be assigned to, so that insertions can be made
with the operator. If an alocation error occurs while inserting a new key-value pair, then the
out _of _nenory exceptionisthrown if it isenabled. If the exception is not enabled, then
areference to address zero will be returned. Thiswill result in arun-time error on systems
which trap address zero references.

Theoperat or [] public member function returns a reference to the element at the given
key value. If the key does not exist, areference to a created element is returned. The result
of the operator may be assigned to.

WCExcept : : out _of _nenory

Skip List Containers 453

WCPtrSkipListDict<Key,Value>::operator []()

Synopsis. #i ncl ude <wcski p. h>
public:
Val ue * const & operator[](const Key *) const;

Semantics: operat or [] isthedictionary index operator. A constant reference to the object stored in
the dictionary with the given Key isreturned. If no equivalent element isfound, then the
i ndex _r ange exception isthrown if it isenabled. If the exception isnot enabled, then a
reference to address zero will be returned. Thiswill result in arun-time error on systems
which trap address zero references.

Results: Theoperator [] public member function returns a constant reference to the element at
the given key value. The result of the operator may not be assigned to.

SeeAlso: WCExcept::index_range

454 Skip List Containers

WCPtrSkipListDict<Key,Value>::operator =()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>
public:
WCPt r Ski pLi stDict & operator =(const WCPtrSkipListDict &);

Theoper at or = public member function is the assignment operator for the

WCPt r Ski pLi st Di ct <Key, Val ue> class. Theleft hand side dictionary isfirst cleared
using the cl ear member function, and then the right hand side dictionary is copied. The
new skip list is created with the same probability and maximum pointers, all values or
pointers stored in the list, and the exception trap states. If thereis not enough memory to
copy al of the values or pointers in the dictionary, then only some will be copied, and the
out _of _nenory exceptionisthrown if it isenabled. The number of entrieswill correctly
reflect the number copied.

Theoper at or = public member function assigns the left hand side dictionary to be a copy
of the right hand side.

cl ear, WCExcept : : out _of _nmenory

Skip List Containers 455

WCPtrSkipListDict<Key,Value>::operator ==()

Synopsis. #i ncl ude <wcski p. h>
public:
int operator ==(const WCPtrSkipListDict &) const;

Semantics: Theoper at or == public member function is the equivalence operator for the
WCPt r Ski pLi st Di ct <Key, Val ue> class. Two dictionary objects are equivalent if
they are the same object and share the same address.

Results: A TRUE (non-zero) value isreturned if the left hand side and right hand side dictionary are
the same object. A FALSE (zero) valueis returned otherwise.

456 Skip List Containers

WCPtrSkipListDict<Key,Value>::remove()

Synopsis:

Semantics:

Results:

#i ncl ude <weski p. h>
public:
Val ue * renove(const Key *);

Ther emove public member function is used to remove the specified el ement from the

dictionary. If an equivalent element isfound, the pointer valueisreturned. Zero is returned

if the element is not found. Note that equivalence is based on the equivalence operator of the
Key type.

The element is removed from the dictionary if it found.

Skip List Containers 457

WCPtrSkipList<Type>, WCPtrSkipListSet<Type>

Declared:

weski p. h

WCPt r Ski pLi st <Type> and WCPt r Ski pLi st Set <Type> classes are templated
classes used to store objectsin askip list. A skip list is a probabilistic aternative to balanced
trees, and provides a reasonable performance balance to insertion, search, and deletion. A
skip list allows more than one copy of an element that is equivalent, while the skip list set
allows only one copy. The equality operator of the element’ s type is used to locate the value.

In the description of each member function, thetext Ty pe is used to indicate the template
parameter defining the type of the data pointed to by the pointers stored in the list.

Note that pointersto the elements are stored in the list. Destructors are not called on the
elements pointed to. The data values pointed to in the list should not be changed such that
the equivalence to the old value is modified.

Theiterator classes for skip lists have the same function and operator interface as the hash
iterators classes. See the chapter on hash iterators for more information.

The WCEXcept classisabase class of the WCPt r Ski pLi st <Type> and

WCPt r Ski pLi st Set <Type> classes and providesthe except i ons member function.
This member function controls the exceptions which can be thrown by the

WCPt r Ski pLi st <Type> and WCPt r Ski pLi st Set <Type> objects. No exceptions
are enabled unless they are set by the except i ons member function.

Requirements of Type

The WCPt r Ski pLi st <Type> and WCPt r Ski pLi st Set <Type> classes requires
Type to have:

A well defined equivalence operator
(int operator ==(const Type &) const).

A well defined less than operator
(int operator <(const Type &) const).

Public Member Functions
The following member functions are declared in the public interface:

WCPt r Ski pLi st (unsi gned = WCSKI PLI ST_PROB_QUARTER, unsi gned
WCDEFAULT_SKI PLI ST_MAX_PTRS) ;

WCPt r Ski pLi st (unsi gned = WCSKI PLI ST_PROB_QUARTER, unsi gned
WCDEFAULT_SKI PLI ST_MAX_PTRS, void * (*user_alloc)(size_t size
), void (*user _dealloc)(void *old, size_t size));

458 Skip List Containers

WCPtrSkipList<Type>, WCPtrSkipListSet<Type>

WCPt r Ski pLi st (const WCPtr SkipList &);

virtual ~WCPtr Ski pList();

WCPt r Ski pLi st Set (unsi gned = WCSKI PLI ST_PROB_QUARTER, unsi gned
= WCDEFAULT_SKI PLI ST_MAX_PTRS) ;

WCPt r Ski pLi st Set (unsi gned = WCSKI PLI ST_PROB_QUARTER, unsi gned
= WCDEFAULT_SKI PLI ST_MAX_PTRS, void * (*user_alloc)(size_t
size), void (*user dealloc)(void *old, size t size));

WCPt r Ski pLi st Set (const WCPt r Ski pLi st Set &);

virtual ~WCPtr Ski pLi st Set ();

void clear();

voi d cl ear AndDest roy();

int contains(const Type *) const;

unsi gned entries() const;

Type * find(const Type *) const;

void forAl'l (void (*user _fn)(Type *, void *) , void *);

int insert(Type *);

int isEnpty() const;

Type * renove(const Type *);

The following public member functions are available for the WCPt r Ski pLi st classonly:

unsi gned occurrencesOf(const Type *) const;
unsi gned renoveAl | (const Type *);

Public Member Operators

The following member operators are declared in the public interface:
WCPt r Ski pLi st & operator =(const WCPtr SkiplList &);
i nt operator ==(const WCPtr SkiplList &) const;

WCPt r Ski pLi st Set & operator =(const WCPtrSkipListSet &);
i nt operator ==(const WCPtrSkiplListSet &) const;

Skip List Containers 459

WCPtrSkipListSet<Type>::WCPtrSkipListSet()

Synopsis. #i ncl ude <wcski p. h>
public:
WCPt r Ski pLi st Set (unsi gned = WCSKI PLI ST_PROB_QUARTER,
unsi gned = WCDEFAULT_SKI PLI ST_MAX_PTRS) ;

Semantics: TheWCPt r Ski pLi st Set <Type> constructor createsa WCPt r Ski pLi st Set object
with no entries. The first optional parameter, which defaults to the constant
WCSKI PLI ST_PROB_QUARTER, determines the probability of having a certain number of
pointersin each skip list node. The second optional parameter, which defaults to the
constant WCDEFAUL T _SKI PLI ST_MAX_PTRS, determines the maximum number of
pointersthat are allowed in any skip list node. WCDEFAULT_SKI PLI ST_MAX_PTRS is
the maximum effective value of the second parameter. |f an allocation failure occurs while
creating the skip list, the out _of _nenory exceptionisthrown if the out _of _nenory
exception is enabled.

Results: The WCPt r Ski pLi st Set <Type> constructor creates an initialized
WCPt r Ski pLi st Set object.

SeeAlso: ~WCPt r Ski pLi st <Type>, WCExcept : : out _of _nmenory

460 Skip List Containers

WCPtrSkipListSet<Type>::WCPtrSkipListSet()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>

public:

WCPt r Ski pLi st Set (unsi gned = WCSKI PLI ST_PROB_QUARTER,
unsi gned = WCDEFAULT _SKI PLI ST_MAX_PTRS,

void * (*user_alloc)(size_t),

void (*user _dealloc)(void *, size_t));

Allocator and deallocator functions are specified for use when entries are inserted and
removed from the list. The semantics of this constructor are the same as the constructor
without the memory management functions.

The allocation function must return azero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Y our allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of askip list. To determine
the size of the objects that the memory management functions will be required to all ocate and
free, the following macro may be used:

WCPt r Ski pLi st SetltentSi ze(Type, num.of _pointers)

The WCPt r Ski pLi st Set <Type> constructor creates an initialized
WCPt r Ski pLi st Set object.

~WCPt r Ski pLi st <Type>, WCExcept : : out _of _nenory

Skip List Containers 461

WCPtrSkipListSet<Type>::WCPtrSkipListSet()

Synopsis. #i ncl ude <wcski p. h>
public:
WCPt r Ski pLi st Set (const WCPt r Ski pLi st Set &);

Semantics: TheWCPt r Ski pLi st Set <Type> constructor is the copy constructor for the
WCPt r Ski pLi st Set class. The new skip list is created with the same probability and
maximum pointers, all values or pointers stored in the list, and the exception trap states. If
thereis not enough memory to copy all of the values, then only some will be copied, and the
number of entrieswill correctly reflect the number copied. If al of the elements cannot be
copied, then the out _of _nenory exception isthrown if it is enabled.

Results: The WCPt r Ski pLi st Set <Type> constructor createsa WCPt r Ski pLi st Set object
which is acopy of the passed list.

SeeAlso: operator =, WCExcept::out of nenory

462 Skip List Containers

WCPtrSkipListSet<Type>::~WCPtrSkipListSet()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>
public:
virtual ~WCPtr Ski pLi st Set ();

The WCPt r Ski pLi st Set <Type> destructor is the destructor for the

WCPt r Ski pLi st Set class. If the number of elementsis not zero and the not _enpty
exception is enabled, the exception isthrown. Otherwise, the list elements are cleared using
thecl ear member function. The objects which the list elements point to are not deleted
unlessthe cl ear AndDest r oy member function is explicitly called before the destructor is
caled. Thecall to the WCPt r Ski pLi st Set <Type> destructor isinserted implicitly by
the compiler at the point where the WCPt r Ski pLi st Set object goes out of scope.

The call tothe WCPt r Ski pLi st Set <Type> destructor destroys a
WCPt r Ski pLi st Set object.

cl ear, cl ear AndDest r oy, WCEXcept : : not _enpty

Skip List Containers 463

WCPtrSkipList<Type>::WCPtrSkipList()

Synopsis. #i ncl ude <wcski p. h>
public:
WCPt r Ski pLi st (unsi gned = WCSKI PLI ST_PROB_QUARTER,
unsi gned = WCDEFAULT_SKI PLI ST_MAX_PTRS) ;

Semantics: TheWCPt r Ski pLi st <Type> constructor createsa WCPt r Ski pLi st object with no
entries. Thefirst optional parameter, which defaults to the constant
WCSKI PLI ST_PROB_QUARTER, determines the probability of having a certain number of
pointersin each skip list node. The second optional parameter, which defaults to the
constant WCDEFAUL T _SKI PLI ST_MAX_PTRS, determines the maximum number of
pointersthat are allowed in any skip list node. WCDEFAULT_SKI PLI ST_MAX_PTRS is
the maximum effective value of the second parameter. |f an allocation failure occurs while
creating the skip list, the out _of _nenory exceptionisthrown if the out _of _nenory
exception is enabled.

Results: The WCPt r Ski pLi st <Type> constructor creates an initialized WCPt r Ski pLi st object.

SeeAlso: ~WCPt r Ski pLi st <Type>, WCExcept : : out _of _nmenory

464 Skip List Containers

WCPtrSkipList<Type>::WCPtrSkipList()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <weski p. h>

public:

WCPt r Ski pLi st (unsi gned = WCSKI PLI ST_PROB_QUARTER,
unsi gned = WCDEFAULT _SKI PLI ST_MAX_PTRS,

void * (*user_alloc)(size_t),

void (*user _dealloc)(void *, size_t));

Allocator and deallocator functions are specified for use when entries are inserted and
removed from the list. The semantics of this constructor are the same as the constructor
without the memory management functions.

The allocation function must return azero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Y our allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of askip list. To determine
the size of the objects that the memory management functions will be required to all ocate and
free, the following macro may be used:

WCPt r Ski pLi stltenSize(Type, num.of _pointers)

The WCPt r Ski pLi st <Type> constructor creates an initialized WCPt r Ski pLi st object.

~WCPt r Ski pLi st <Type>, WCExcept : : out _of _nenory

Skip List Containers 465

WCPtrSkipList<Type>::WCPtrSkipList()

Synopsis. #i ncl ude <wcski p. h>
public:
WCPt r Ski pLi st (const WCPtr SkipList &);

Semantics: TheWCPt r Ski pLi st <Type> constructor isthe copy constructor for the
WCPt r Ski pLi st class. The new skip list is created with the same probability and
maximum pointers, all values or pointers stored in the list, and the exception trap states. If
thereis not enough memory to copy all of the values, then only some will be copied, and the
number of entrieswill correctly reflect the number copied. If al of the elements cannot be
copied, then the out _of _nenory exception isthrown if it is enabled.

Results: The WCPt r Ski pLi st <Type> constructor createsa WCPt r Ski pLi st object whichisa
copy of the passed list.

SeeAlso: operator =, WCExcept::out of nenory

466 Skip List Containers

WCPtrSkipList<Type>::~WCPtrSkipList()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>
public:
virtual ~WCPtr Ski pList();

The WCPt r Ski pLi st <Type> destructor is the destructor for the WCPt r Ski pLi st
class. If the number of elementsis not zero and the not _enpt y exception is enabled, the
exception isthrown. Otherwise, the list elements are cleared using the cl ear member
function. The objects which the list elements point to are not deleted unless the

cl ear AndDest r oy member function is explicitly called before the destructor is called.
The call to the WCPt r Ski pLi st <Type> destructor isinserted implicitly by the compiler
at the point where the WCPt r Ski pLi st object goes out of scope.

The call tothe WCPt r Ski pLi st <Type> destructor destroysa WCPt r Ski pLi st object.

cl ear, cl ear AndDest r oy, WCEXcept : : not _enpty

Skip List Containers 467

WCPtrSkipList<Type>::clear(), WCPtrSkipListSet<Type>::clear()

Synopsis. #i ncl ude <wcski p. h>
public:
void clear();

Semantics: Thecl ear public member function isused to clear the list so that it has no entries. Objects
pointed to by the list elements are not deleted. Thelist object is not destroyed and re-created
by this function, so the object destructor is not invoked.

Results: The cl ear public member function clearsthe list to have no elements.

SeeAlso: ~WCPt r Ski pLi st <Type>, cl ear AndDest r oy, operator =

468 Skip List Containers

WCPtrSkipList<Type>WCPtrSkipListSet<Type>::clearAndDestroy()

Synopsis. #i ncl ude <wcski p. h>
public:
voi d cl ear AndDest roy();

Semantics: Thecl ear AndDest r oy public member function is used to clear the list and delete the
objects pointed to by the list elements. The list object is not destroyed and re-created by this
function, so the list object destructor is not invoked.

Results: Thecl ear AndDest r oy public member function clearsthe list by deleting the objects
pointed to by the list elements, and then removing the list elements from the list.

See Also; cl ear

Skip List Containers 469

WCPtrSkipList<Type>::contains(), WCPtrSkipListSet<Type>::contains()

Synopsis. #i ncl ude <wcski p. h>
public:
int contains(const Type *) const;

Semantics: Thecont ai ns public member function returns non-zero if the element is stored in the list,
or zero if thereis no equivalent element. Note that equivalence is based on the equivalence
operator of the element type.

Results: The cont ai ns public member function returns a non-zero value if the element isfound in
thelist.

SeeAlso: find

470 Skip List Containers

WCPtrSkipList<Type>::entries(), WCPtrSkipListSet<Type>::entries()

Synopsis. #i ncl ude <wcski p. h>
public:
unsi gned entries() const;

Semantics: Theent ri es public member function is used to return the current number of elements
stored in the list.

Results: Theent ri es public member function returns the number of elementsin thelist.

SeeAlso: i sEnmpty

Skip List Containers 471

WCPtrSkipList<Type>::find(), WCPtrSkipListSet<Type>::find()

Synopsis. #i ncl ude <wcski p. h>
public:
Type * find(const Type *) const;

Semantics: Thef i nd public member function is used to find an element with an equivalent value in the

list. If an equivalent element isfound, a pointer to the element isreturned. Zero is returned

if the element is not found. Note that equivalence is based on the equivalence operator of the
element type.

Results: The element equivalent to the passed value islocated in the list.

472 Skip List Containers

WCPtrSkipList<Type>::forAll(), WCPtrSkipListSet<Type>::forAll()

Synopsis. #i ncl ude <wcski p. h>
public:
void forAll(
void (*user _fn)(Type *, void *),
void *);

Semantics: Thef or Al | public member function causes the user supplied function to be invoked for
every valuein thelist. The user function has the prototype

voi d user func(Type * value, void * data);

Asthe elements are visited, the user function isinvoked with the element passed as the first.
The second parameter of the f or Al | function is passed as the second parameter to the user
function. Thisvalue can be used to pass any appropriate data from the main code to the user
function.

Results: The elementsin thelist are al visited, with the user function being invoked for each one.

SeeAlso: find

Skip List Containers 473

WCPtrSkipList<Type>::insert(), WCPtrSkipListSet<Type>::insert()

Synopsis. #i ncl ude <wcski p. h>
public:
int insert(Type *);

Semantics: Thei nsert public member function inserts avalueinto thelist. If alocation of the node to
store the value fails, then the out _of _menory exception isthrownif it isenabled. If the
exception is not enabled, the insert will not be completed.

WithaWCPt r Ski pLi st Set, there must be only one equivalent element in the set. If an
element equivalent to the inserted element is already in thelist set, the list set will remain
unchanged, and the not _uni que exception isthrownif it isenabled. If the exceptionis
not enabled, the insert will not be compl eted.

Results: Thei nsert public member function insertsavalueinto thelist. If theinsert is successful,
anon-zero will returned. A zero will be returned if the insert fails.

SeeAlso: operator =, WCExcept::out of nenory, WCExcept : : not _uni que

474 Skip List Containers

WCPtrSkipList<Type>::isEmpty(), WCPtrSkipListSet<Type>::isEmpty()

Synopsis. #i ncl ude <wcski p. h>
public:
int iseEnpty() const;
Semantics: Thei sEnpt y public member function is used to determineif the list is empty.

Results: Thei sEnpt y public member function returns zero if it contains at least one entry, non-zero
if the list is empty.

See Also: entries

Skip List Containers 475

WCPtrSkipList<Type>::occurrencesOf()

Synopsis. #i ncl ude <wcski p. h>
public:
unsi gned occurrencesOf(const Type *) const;

Semantics: TheoccurrencesOf public member function is used to return the current number of
elements stored in the list which are equivalent to the passed value. Note that equivalenceis
based on the equivalence operator of the element type.

Results: TheoccurrencesO public member function returns the number of elementsin thelist
which are equivalent to the passed value.

SeeAlso: entries,find,isEnpty

476 Skip List Containers

WCPtrSkipList<Type>::operator =(), WCPtrSkipListSet<Type>::operator =()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>

public:

WCPt r Ski pLi st & operator =(const WCPtr SkipList &);

WCPt r Ski pLi st Set & operator =(const WCPtrSkipListSet &);

Theoper at or = public member function is the assignment operator for the

WCPt r Ski pLi st <Type> and WCPt r Ski pLi st Set <Type> classes. Theleft hand
sidelistisfirst cleared using the cl ear member function, and then the right hand side list is
copied. Thelist function, exception trap states, and all of the list elements are copied. If
thereis not enough memory to copy all of the values or pointersin thelist, then only some
will be copied, and the out _of _nmenor y exception isthrown if it is enabled. The number
of entrieswill correctly reflect the number copied.

Theoper at or = public member function assigns the left hand side list to be a copy of the
right hand side.

cl ear, WCExcept : : out _of _nmenory

Skip List Containers 477

WCPtrSkipList<Type>::operator ==(), WCPtrSkipListSet<Type>::operator ==()

Synopsis:

Semantics:

Results:

#i ncl ude <weski p. h>

public:

i nt operator ==(const WCPtrSkipList &) const;

i nt operator ==(const WCPtrSkipListSet &) const;

Theoper at or == public member function is the equivalence operator for the
WCPt r Ski pLi st <Type> and WCPt r Ski pLi st Set <Type> classes. Two list objects
are equivalent if they are the same object and share the same address.

A TRUE (non-zero) value isreturned if the left hand side and right hand side list are the
same object. A FALSE (zero) valueisreturned otherwise.

478 Skip List Containers

WCPtrSkipList<Type>::remove(), WCPtrSkipListSet<Type>::remove()

Synopsis. #i ncl ude <wcski p. h>
public:
Type * renove(const Type *);

Semantics: Ther enpve public member function is used to remove the specified element from the list.
If an equivalent element isfound, the pointer valueis returned. Zero isreturned if the
element is not found. If thelistisa WCPt r Ski pLi st and there is more than one element
equivalent to the specified element, then the last equivalent element added to the
WCPt r Ski pLi st isremoved. Note that equivalenceis based on the equivalence operator
of the element type.

Results: The element is removed from thelist.

Skip List Containers 479

WCPtrSkipList<Type>::removeAll()

Synopsis. #i ncl ude <wcski p. h>
public:
unsi gned renoveAl | (const Type *);

Semantics: Ther enoveAl | public member function is used to remove all elements equivalent to the
specified element from thelist. Zeroisreturned if no equivalent elements are found. Note
that equivalence is based on the equivalence operator of the element type.

Results: All equivalent elements are removed from the list.

480 Skip List Containers

WCValSkipListDict<Key,Value>

Declared:

weski p. h

TheWCVal Ski pLi st Di ct <Key, Val ue> classis atemplated class used to store objects
inadictionary. Dictionaries store values with an associated key, which may be of any type.
One example of adictionary used in everyday life is the phone book. The phone numbers
are the data values, and the customer name isthe key. The equality operator of the key’s
typeis used to locate the key-value pairs.

In the description of each member function, the text Key is used to indicate the template
parameter defining the type of the indices used to store datain the dictionary. The text

Val ue isused to indicate the template parameter defining the type of the data stored in the
dictionary.

Values are copied into the dictionary, which could be undesirable if the stored objects are
complicated and copying is expensive. Value dictionaries should not be used to store objects
of abase classif any derived types of different sizes would be stored in the dictionary, or if
the destructor for aderived class must be called.

Theiterator classes for skip lists have the same function and operator interface as the hash
iterators classes. See the chapter on hash iterators for more information.

The WCEXxcept classisabase class of the WCVal Ski pLi st Di ct <Key, Val ue> class
and providesthe except i ons member function. This member function controls the
exceptions which can be thrown by the WCVal Ski pLi st Di ct <Key, Val ue> object. No
exceptions are enabled unless they are set by the except i ons member function.
Requirements of Key and Value

TheWCVval Ski pLi st Di ct <Key, Val ue> classrequires Key to have:

A default constructor (Key: : Key()).

A well defined copy constructor (Key: : Key(const Key &)).

A well defined assignment operator (Key & operator =(const Key &)).

A well defined equivalence operator with constant parameters
(int operator ==(const Key &) const).

A well defined operator less than with constant parameters
(int operator <(const Key &) const).

TheWCVal Ski pLi st Di ct <Key, Val ue> classrequires Val ue to have:

Skip List Containers 481

WCValSkipListDict<Key,Value>

A default constructor (Val ue: : Val ue()).

A well defined copy constructor (Val ue: : Val ue(const Value &)).

A well defined assignment operator (Val ue & operator =(const Value &)).
Public Member Functions

The following member functions are declared in the public interface:

WCVal Ski pLi st Di ct (unsi gned = WCSKi pLi st Di ct _PROB_QUARTER
unsi gned = WCDEFAULT_SKI PLI ST_MAX_PTRS) ;

WCVal Ski pLi st Di ct (unsi gned = WCSkKi pLi st Di ct _PROB_QUARTER
unsi gned = WCDEFAULT_SKI PLI ST_MAX_PTRS, void * (*user _alloc)(
size_t size), void (*user_dealloc)(void *old, size_t size)
);
WCVal Ski pLi stDi ct (const WCVal Ski pListDict &);

virtual ~WCVal SkipListDict();

void clear();

int contains(const Key &) const;

unsi gned entries() const;

int find(const Key & Value &) const;

i nt findKeyAndVal ue(const Key & Key & Value &) const;
void forAl'l (void (*user _fn)(Key, Value, void *), void *);
int insert(const Key & const Value &);

int isEnpty() const;

int remove(const Key &);

Public Member Operators

The following member operators are declared in the public interface:
Val ue & operator [](const Key &);

const Value & operator [](const Key &) const;

WCVal Ski pLi stDi ct & operator =(const WCVal SkipListDict &);
int operator ==(const WCVal SkipListDict &) const;

482 Skip List Containers

WCValSkipListDict<Key,Value>::WCValSkipListDict()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>

public:

WCVal Ski pLi st Di ct (unsi gned = WCSKI PLI ST_PROB_QUARTER,
unsi gned = WCDEFAULT_SKI PLI ST_MAX_PTRS) ;

The public WCVal Ski pLi st Di ct <Key, Val ue> constructor creates an

WCVal Ski pLi st Di ct <Key, Val ue> object with no entries. Thefirst optional
parameter, which defaults to the constant WCSKI PLI ST_PROB_QUARTER, determinesthe
probability of having a certain number of pointersin each skip list node. The second
optional parameter, which defaults to the constant WCDEFAULT _SKI PLI ST_MAX_PTRS,
determines the maximum number of pointers that are allowed in any skip list node.
WCDEFAULT _SKI PLI ST_MAX_PTRS is the maximum effective value of the second
parameter. If an allocation failure occurs while creating the skip list, the out _of _menory
exception isthrown if the out _of _nmenor y exception is enabled.

The public WCVal Ski pLi st Di ct <Key, Val ue> constructor creates an initialized
WCVal Ski pLi st Di ct <Key, Val ue> object.

~WCVal Ski pLi st Di ct <Key, Val ue>, WCExcept : : out _of _nenory

Skip List Containers 483

WCValSkipListDict<Key,Value>::WCValSkipListDict()

Synopsis. #i ncl ude <wcski p. h>
public:
WCVal Ski pLi st Di ct (unsi gned = WCSKI PLI ST_PROB_QUARTER,
unsi gned = WCDEFAULT _SKI PLI ST_MAX_PTRS,
void * (*user_alloc)(size_t),
void (*user _dealloc)(void *, size_t));

Semantics. Allocator and deallocator functions are specified for use when entries are inserted and
removed from the list dictionary. The semantics of this constructor are the same asthe
constructor without the memory management functions.

The allocation function must return azero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Y our allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of alist dictionary. To
determine the size of the objects that the memory management functions will be required to
allocate and free, the following macro may be used:

WCVal Ski pLi stDictltenti ze(Key, Value, num.of _pointers)

Results: The public WCVal Ski pLi st Di ct <Key, Val ue> constructor creates an initialized
WCVal Ski pLi st Di ct <Key, Val ue> object.

SeeAlso: ~WCVal Ski pLi st Di ct <Key, Val ue>, WCExcept : : out _of nenory

484 Skip List Containers

WCValSkipListDict<Key,Value>::WCValSkipListDict()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>
public:
WCVal Ski pLi stDi ct (const WCVal Ski pListDict &);

The public WCVal Ski pLi st Di ct <Key, Val ue> constructor isthe copy constructor for
the WCVal Ski pLi st Di ct <Key, Val ue> class. The new skip list is created with the
same probability and maximum pointers, all values or pointers stored in thelist, and the
exception trap states. If thereis not enough memory to copy all of the values, then only
some will be copied, and the number of entries will correctly reflect the number copied. If
all of the elements cannot be copied, then the out _of _nmenory exceptionisthrown if itis
enabled.

The public WCVal Ski pLi st Di ct <Key, Val ue> constructor creates an
WCVal Ski pLi st Di ct <Key, Val ue> object which isacopy of the passed dictionary.

operat or =, WCExcept :: out _of nmenory

Skip List Containers 485

WCValSkipListDict<Key,Value>::~WCValSkipListDict()

Synopsis. #i ncl ude <wcski p. h>
public:
virtual ~WCVal SkipListDict();

Semantics: The public ~\WWCVal Ski pLi st Di ct <Key, Val ue> destructor isthe destructor for the
WCVal Ski pLi st Di ct <Key, Val ue> class. If the number of dictionary elementsis not
zero and the not _enpt y exception is enabled, the exception isthrown. Otherwise, the
dictionary elements are cleared using the cl ear member function. The call to the public
~WCVal Ski pLi st Di ct <Key, Val ue> destructor isinserted implicitly by the compiler
at the point where the WCVal Ski pLi st Di ct <Key, Val ue> object goes out of scope.

Results: The public ~WCVal Ski pLi st Di ct <Key, Val ue> destructor destroys an
WCVal Ski pLi st Di ct <Key, Val ue> object.

SeeAlso: cl ear, WCExcept : : not _enpty

486 Skip List Containers

WCValSkipListDict<Key,Value>::clear()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <weski p. h>
public:
void clear();

Thecl ear public member function isused to clear the dictionary so that it has no entries.
Elements stored in the dictionary are destroyed using the destructors of Key and of Val ue.
The dictionary object is not destroyed and re-created by this function, so the object destructor
is not invoked.

Thecl ear public member function clears the dictionary to have no elements.

~WCVal Ski pLi st Di ct <Key, Val ue>, operator =

Skip List Containers 487

WCValSkipListDict<Key,Value>::contains()

Synopsis. #i ncl ude <wcski p. h>
public:
int contains(const Key &) const;

Semantics: Thecont ai ns public member function returns non-zero if an element with the specified
key is stored in the dictionary, or zero if there is no equivalent element. Note that
equivalenceis based on the equivalence operator of the Key type.

Results: The cont ai ns public member function returns a non-zero value if the Key isfound in the
dictionary.

SeeAlso: find,findKeyAndVal ue

488 Skip List Containers

WCValSkipListDict<Key,Value>::entries()

Synopsis. #i ncl ude <wcski p. h>
public:
unsi gned entries() const;

Semantics: Theent ri es public member function is used to return the current number of elements
stored in the dictionary.

Results: Theent ri es public member function returns the number of elementsin the dictionary.

SeeAlso: i sEnmpty

Skip List Containers 489

WCValSkipListDict<Key,Value>::find()

Synopsis. #i ncl ude <wcski p. h>
public:
int find(const Key & Value &) const;

Semantics: Thef i nd public member function is used to find an element with an equivalent key in the
dictionary. If an equivalent element isfound, a non-zero valueisreturned. The reference to
aVal ue passed as the second argument is assigned the found element’s Val ue. Zerois
returned if the element is not found. Note that equivalence is based on the equivalence
operator of the Key type.

Results: The element equivalent to the passed key is located in the dictionary.

SeeAlso: findKeyAndVal ue

490 Skip List Containers

WCValSkipListDict<Key,Value>::findKeyAndValue()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <weski p. h>

public:

i nt findKeyAndVal ue(const Key &,
Key & Value &) const;

Thef i ndKeyAndVal ue public member function is used to find an element in the
dictionary with an key equivalent to the first parameter. If an equivalent element isfound, a
non-zero value isreturned. The referenceto a Key passed as the second parameter is
assigned the found element’skey. The referenceto a Val ue passed as the third argument is
assigned the found element’s Val ue. Zeroisreturned if the element is not found. Note
that equivalence is based on the equivalence operator of the Key type.

The element equivalent to the passed key is located in the dictionary.

fi ndkeyAndVal ue

Skip List Containers 491

WCValSkipListDict<Key,Value>::forAll()

Synopsis. #i ncl ude <wcski p. h>
public:
void forAll(
void (*user _fn)(Key, Value, void *),
void *);

Semantics: Thef or Al | public member function causes the user supplied function to be invoked for
every key-value pair in the dictionary. The user function has the prototype

voi d user func(Key key, Value value, void * data);

Asthe elements are visited, the user function isinvoked with the Key and Val ue
components of the element passed as the first two parameters. The second parameter of the
forAll functionis passed asthe third parameter to the user function. This value can be
used to pass any appropriate data from the main code to the user function.

Results: The elementsin the dictionary are al visited, with the user function being invoked for each
one.

SeeAlso: find,findKeyAndVal ue

492 Skip List Containers

WCValSkipListDict<Key,Value>::insert()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <weski p. h>
public:
int insert(const Key & const Value &);

Thei nsert public member function inserts akey and value into the dictionary. If
allocation of the node to store the key-value pair fails, then the out _of _menory exception
isthrown if it isenabled. If the exception is not enabled, the insert will not be compl eted.

Thei nsert public member function inserts akey and value into the dictionary. If the
insert is successful, anon-zero will returned. A zero will be returned if the insert fails.

operat or =, WCExcept :: out _of _nmenory

Skip List Containers 493

WCValSkipListDict<Key,Value>::isEmpty()

Synopsis. #i ncl ude <wcski p. h>
public:
int iseEnpty() const;
Semantics: Thei sEnpt y public member function is used to determine if the dictionary is empty.

Results: Thei sEnpt y public member function returns zero if it contains at least one entry, non-zero
if the dictionary is empty.

See Also: entries

494 Skip List Containers

WCValSkipListDict<Key,Value>::operator []()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>
public:
Val ue & operator[](const Key &);

operat or [] isthedictionary index operator. A reference to the object stored in the
dictionary with the given Key isreturned. If no equivalent element isfound, then a new
key-value pair is created with the specified Key value, and initialized with the default
constructor. The returned reference can then be assigned to, so that insertions can be made
with the operator. If an alocation error occurs while inserting a new key-value pair, then the
out _of _nenory exceptionisthrown if it isenabled. If the exception is not enabled, then
areference to address zero will be returned. Thiswill result in arun-time error on systems
which trap address zero references.

Theoperat or [] public member function returns a reference to the element at the given
key value. If the key does not exist, areference to a created element is returned. The result
of the operator may be assigned to.

WCExcept : : out _of _nenory

Skip List Containers 495

WCValSkipListDict<Key,Value>::operator []()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <weski p. h>
public:
const Value & operator[](const Key &) const;

operat or [] isthedictionary index operator. A constant reference to the object stored in
the dictionary with the given Key isreturned. If no equivalent element isfound, then the

i ndex _r ange exception isthrown if it isenabled. If the exception isnot enabled, then a
reference to address zero will be returned. Thiswill result in arun-time error on systems
which trap address zero references.

Theoperator [] public member function returns a constant reference to the element at
the given key value. The result of the operator may not be assigned to.

WCEXxcept : : i ndex_r ange

496 Skip List Containers

WCValSkipListDict<Key,Value>::operator =()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>
public:
WCVal Ski pLi stDict & operator =(const WCVal SkipListDict &);

Theoper at or = public member function is the assignment operator for the

WCVal Ski pLi st Di ct <Key, Val ue> class. Theleft hand side dictionary isfirst cleared
using the cl ear member function, and then the right hand side dictionary is copied. The
new skip list is created with the same probability and maximum pointers, all values or
pointers stored in the list, and the exception trap states. If thereis not enough memory to
copy al of the values or pointers in the dictionary, then only some will be copied, and the
out _of _nenory exceptionisthrown if it isenabled. The number of entrieswill correctly
reflect the number copied.

Theoper at or = public member function assigns the left hand side dictionary to be a copy
of the right hand side.

cl ear, WCExcept : : out _of _nmenory

Skip List Containers 497

WCValSkipListDict<Key,Value>::operator ==()

Synopsis. #i ncl ude <wcski p. h>
public:
i nt operator ==(const WCVal SkipListDict &) const;

Semantics: Theoper at or == public member function is the equivalence operator for the
WCVal Ski pLi st Di ct <Key, Val ue> class. Two dictionary objects are equivalent if
they are the same object and share the same address.

Results: A TRUE (non-zero) value isreturned if the left hand side and right hand side dictionary are
the same object. A FALSE (zero) valueis returned otherwise.

498 Skip List Containers

WCValSkipListDict<Key,Value>::remove()

Synopsis. #i ncl ude <wcski p. h>
public:
int renmove(const Key &);

Semantics: Ther enpve public member function is used to remove the specified el ement from the

dictionary. If an equivalent element isfound, a non-zero valueisreturned. Zerois returned
if the element is not found. Note that equivalence is based on the equivalence operator of the

Key type.

Results: The element is removed from the dictionary if it found.

Skip List Containers 499

WCValSkipList<Type>, WCValSkipListSet<Type>

Declared:

weski p. h

WCVal Ski pLi st <Type> and WCVal Ski pLi st Set <Type> classes are templated
classes used to store objectsin askip list. A skip list is a probabilistic aternative to balanced
trees, and provides a reasonable performance balance to insertion, search, and deletion. A
skip list allows more than one copy of an element that is equivalent, while the skip list set
allows only one copy. The equality operator of the element’ s type is used to locate the value.

In the description of each member function, thetext Ty pe is used to indicate the template
parameter defining the type of the data to be stored in the list.

Vaues are copied into the list, which could be undesirable if the stored objects are
complicated and copying is expensive. Value skip lists should not be used to store objects of
abase classif any derived types of different sizeswould be stored in the list, or if the
destructor for a derived class must be called.

The iterator classes for skip lists have the same function and operator interface as the hash
iterators classes. See the chapter on hash iterators for more information.

The WCEXcept classisabase class of the WCVal Ski pLi st <Type> and

WCVal Ski pLi st Set <Type> classes and providesthe except i ons member function.
This member function controls the exceptions which can be thrown by the

WCVal Ski pLi st <Type> and WCVal Ski pLi st Set <Type> objects. No exceptions
are enabled unlessthey are set by the except i ons member function.

Requirements of Type

TheWCVal Ski pLi st <Type> and WCVal Ski pLi st Set <Type> classes requires
Type to have:

A default constructor (Type: : Type()).
A well defined copy constructor (Type: : Type(const Type &)).

A well defined equivalence operator
(int operator ==(const Type &) const).

A well defined |ess than operator
(int operator <(const Type &) const).

Public Member Functions

The following member functions are declared in the public interface:

500 Skip List Containers

WCValSkipList<Type>, WCValSkipListSet<Type>

WCVal Ski pLi st (unsi gned = WCSKI PLI ST_PROB_QUARTER, unsi gned
WCDEFAULT _SKI PLI ST_MAX_PTRS) ;

WCVal Ski pLi st (unsi gned = WCSKI PLI ST_PROB_QUARTER, unsi gned
WCDEFAULT_SKI PLI ST_MAX_PTRS, void * (*user_alloc)(size_t size
), void (*user_dealloc)(void *old, size_t size));
WCVal Ski pLi st (const WCVal Ski pList &);

virtual ~WCVal Ski pLi st ();

WCVal Ski pLi st Set (unsi gned = WCSKI PLI ST_PROB_QUARTER, unsi gned
= WCDEFAULT_SKI PLI ST_MAX_PTRS) ;

WCVal Ski pLi st Set (unsi gned = WCSKI PLI ST_PROB_QUARTER, unsi gned
= WCDEFAULT_SKI PLI ST_MAX_PTRS, void * (*user _alloc)(size_t
size), void (*user_dealloc)(void *old, size_t size));
WCVal Ski pLi st Set (const WCVal Ski pLi st Set &);

virtual ~WCVal Ski pLi st Set () ;

void clear();

int contains(const Type &) const;

unsi gned entries() const;

int find(const Type & Type &) const;

void forAll(void (*user fn)(Type, void *), void *);

int insert(const Type &);

int iseEnpty() const;

int renmove(const Type &);

The following public member functions are available for the WCVal Ski pLi st classonly:

unsi gned occurrencesO (const Type &) const;
unsi gned removeAl | (const Type &);

Public Member Operators

The following member operators are declared in the public interface:
WCVal Ski pLi st & operator =(const WCVal Ski pList &);
i nt operator ==(const WCVal Ski pList &) const;

WCVal Ski pLi st Set & operator =(const WCVal Ski pListSet &);
i nt operator ==(const WCVal Ski pListSet &) const;

Skip List Containers 501

WCValSkipListSet<Type>::WCValSkipListSet()

Synopsis. #i ncl ude <wcski p. h>
public:
WCVal Ski pLi st Set (unsi gned = WCSKI PLI ST_PROB_QUARTER,
unsi gned = WCDEFAULT_SKI PLI ST_MAX_PTRS) ;

Semantics: TheWCVal Ski pLi st Set <Type> constructor creates a WCVal Ski pLi st Set object
with no entries. The first optional parameter, which defaults to the constant
WCSKI PLI ST_PROB_QUARTER, determines the probability of having a certain number of
pointersin each skip list node. The second optional parameter, which defaults to the
constant WCDEFAUL T _SKI PLI ST_MAX_PTRS, determines the maximum number of
pointersthat are allowed in any skip list node. WCDEFAULT_SKI PLI ST_MAX_PTRS is
the maximum effective value of the second parameter. |f an allocation failure occurs while
creating the skip list, the out _of _nenory exceptionisthrown if the out _of _nenory
exception is enabled.

Results: TheWCVal Ski pLi st Set <Type> constructor creates an initialized
WCVal Ski pLi st Set object.

SeeAlso: ~WCVal Ski pLi st <Type>, WCExcept : : out _of _nmenory

502 Skip List Containers

WCValSkipListSet<Type>::WCValSkipListSet()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>

public:

WCVal Ski pLi st Set (unsi gned = WCSKI PLI ST_PROB_QUARTER,
unsi gned = WCDEFAULT _SKI PLI ST_MAX_PTRS,

void * (*user_alloc)(size_t),

void (*user _dealloc)(void *, size_t));

Allocator and deallocator functions are specified for use when entries are inserted and
removed from the list. The semantics of this constructor are the same as the constructor
without the memory management functions.

The allocation function must return azero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Y our allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of askip list. To determine
the size of the objects that the memory management functions will be required to all ocate and
free, the following macro may be used:

WCVal Ski pLi st SetltentSi ze(Type, num.of _pointers)

TheWCVal Ski pLi st Set <Type> constructor creates an initialized
WCVal Ski pLi st Set object.

~WCVal Ski pLi st <Type>, WCExcept : : out _of _nenory

Skip List Containers 503

WCValSkipListSet<Type>::WCValSkipListSet()

Synopsis. #i ncl ude <wcski p. h>
public:
WCVal Ski pLi st Set (const WCVal Ski pLi st Set &);

Semantics: TheWCVal Ski pLi st Set <Type> constructor is the copy constructor for the
WCVal Ski pLi st Set class. The new skip list is created with the same probability and
maximum pointers, all values or pointers stored in the list, and the exception trap states. If
thereis not enough memory to copy all of the values, then only some will be copied, and the
number of entrieswill correctly reflect the number copied. If al of the elements cannot be
copied, then the out _of _nenory exception isthrown if it is enabled.

Results: TheWCVal Ski pLi st Set <Type> constructor creates a WCVal Ski pLi st Set object
which is acopy of the passed list.

SeeAlso: operator =, WCExcept::out of nenory

504 Skip List Containers

WCValSkipListSet<Type>::~WCValSkipListSet()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>
public:
virtual ~WCVal Ski pLi st Set () ;

TheWCVal Ski pLi st Set <Type> destructor is the destructor for the

WCVal Ski pLi st Set class. If the number of elementsis not zero and the not _enpty
exception is enabled, the exception isthrown. Otherwise, the list elements are cleared using
thecl ear member function. The call to the WCVal Ski pLi st Set <Type> destructor is
inserted implicitly by the compiler at the point where the WCVal Ski pLi st Set object goes
out of scope.

The call tothe WCVal Ski pLi st Set <Type> destructor destroys a
WCVal Ski pLi st Set object.

cl ear, WCExcept : : not _enpty

Skip List Containers 505

WCValSkipList<Type>::WCValSkipList()

Synopsis. #i ncl ude <wcski p. h>
public:
WCVal Ski pLi st (unsi gned = WCSKI PLI ST_PROB_QUARTER,
unsi gned = WCDEFAULT_SKI PLI ST_MAX_PTRS) ;

Semantics: TheWCVal Ski pLi st <Type> constructor createsa WCVal Ski pLi st object with no
entries. Thefirst optional parameter, which defaults to the constant
WCSKI PLI ST_PROB_QUARTER, determines the probability of having a certain number of
pointersin each skip list node. The second optional parameter, which defaults to the
constant WCDEFAUL T _SKI PLI ST_MAX_PTRS, determines the maximum number of
pointersthat are allowed in any skip list node. WCDEFAULT_SKI PLI ST_MAX_PTRS is
the maximum effective value of the second parameter. |f an allocation failure occurs while
creating the skip list, the out _of _nenory exceptionisthrown if the out _of _nenory
exception is enabled.

Results: TheWCVal Ski pLi st <Type> constructor creates an initialized WCVal Ski pLi st object.

SeeAlso: ~WCVal Ski pLi st <Type>, WCExcept : : out _of _nmenory

506 Skip List Containers

WCValSkipList<Type>::WCValSkipList()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <weski p. h>

public:

WCVal Ski pLi st (unsi gned = WCSKI PLI ST_PROB_QUARTER,
unsi gned = WCDEFAULT _SKI PLI ST_MAX_PTRS,

void * (*user_alloc)(size_t),

void (*user _dealloc)(void *, size_t));

Allocator and deallocator functions are specified for use when entries are inserted and
removed from the list. The semantics of this constructor are the same as the constructor
without the memory management functions.

The allocation function must return azero if it cannot perform the allocation. The
deallocation function is passed the size as well as the pointer to the data. Y our allocation
system may take advantage of the characteristic that the allocation function will always be
called with the same size value for any particular instantiation of askip list. To determine
the size of the objects that the memory management functions will be required to all ocate and
free, the following macro may be used:

WCVal Ski pLi stltentSize(Type, num.of _pointers)

TheWCVval Ski pLi st <Type> constructor creates an initialized WCVal Ski pLi st object.

~WCVal Ski pLi st <Type>, WCExcept : : out _of _nenory

Skip List Containers 507

WCValSkipList<Type>::WCValSkipList()

Synopsis. #i ncl ude <wcski p. h>
public:
WCVal Ski pLi st (const WCVal Ski pList &);

Semantics: TheWCVal Ski pLi st <Type> constructor isthe copy constructor for the
WCVal Ski pLi st class. The new skip list is created with the same probability and
maximum pointers, all values or pointers stored in the list, and the exception trap states. If
thereis not enough memory to copy all of the values, then only some will be copied, and the
number of entrieswill correctly reflect the number copied. If al of the elements cannot be
copied, then the out _of _nenory exception isthrown if it is enabled.

Results: TheWCVal Ski pLi st <Type> constructor createsa WCVal Ski pLi st object whichisa
copy of the passed list.

SeeAlso: operator =, WCExcept::out of nenory

508 Skip List Containers

WCValSkipList<Type>::~WCValSkipList()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>
public:
virtual ~WCVal Ski pLi st ();

TheWCVal Ski pLi st <Type> destructor is the destructor for the WCVal Ski pLi st
class. If the number of elementsis not zero and the not _enpt y exception is enabled, the
exception isthrown. Otherwise, the list elements are cleared using the cl ear member
function. The call to the WCVal Ski pLi st <Type> destructor isinserted implicitly by the
compiler at the point where the WCVal Ski pLi st object goes out of scope.

The call tothe WCVal Ski pLi st <Type> destructor destroysa WCVal Ski pLi st object.

cl ear, WCEXxcept : : not _enmpty

Skip List Containers 509

WCValSkipList<Type>::clear(), WCValSkipListSet<Type>::clear()

Synopsis. #i ncl ude <wcski p. h>
public:
void clear();

Semantics: Thecl ear public member function isused to clear thelist so that it has no entries.
Elements stored in the list are destroyed using the destructors of Type. Thelist objectis
not destroyed and re-created by this function, so the object destructor is not invoked.

Results: The cl ear public member function clearsthe list to have no elements.

SeeAlso: ~WCVal Ski pLi st <Type>, operator =

510 Skip List Containers

WCValSkipList<Type>::contains(), WCValSkipListSet<Type>::contains()

Synopsis. #i ncl ude <wcski p. h>
public:
int contains(const Type &) const;

Semantics: Thecont ai ns public member function returns non-zero if the element is stored in the list,
or zero if thereis no equivalent element. Note that equivalence is based on the equivalence
operator of the element type.

Results: The cont ai ns public member function returns a non-zero value if the element isfound in
thelist.

SeeAlso: find

Skip List Containers 511

WCValSkipList<Type>::entries(), WCValSkipListSet<Type>::entries()

Synopsis. #i ncl ude <wcski p. h>
public:
unsi gned entries() const;

Semantics: Theent ri es public member function is used to return the current number of elements
stored in the list.

Results: Theent ri es public member function returns the number of elementsin thelist.

SeeAlso: i sEnmpty

512 Skip List Containers

WCValSkipList<Type>::find(), WCValSkipListSet<Type>::find()

Synopsis. #i ncl ude <wcski p. h>
public:
int find(const Type & Type &) const;

Semantics: Thef i nd public member function is used to find an element with an equivalent value in the
list. If an equivalent element isfound, a non-zero value isreturned. The reference to the
element passed as the second argument is assigned the found element’svalue. Zerois
returned if the element is not found. Note that equivalence is based on the equivalence
operator of the element type.

Results: The element equivalent to the passed value islocated in the list.

Skip List Containers 513

WCValSkipList<Type>::forAll(), WCValSkipListSet<Type>::forAll()

Synopsis. #i ncl ude <wcski p. h>
public:
void forAll(
void (*user_fn)(Type, void *),
void *);

Semantics: Thef or Al | public member function causes the user supplied function to be invoked for
every valuein thelist. The user function has the prototype

voi d user func(Type & value, void * data);

Asthe elements are visited, the user function isinvoked with the element passed as the first.
The second parameter of the f or Al | function is passed as the second parameter to the user
function. Thisvalue can be used to pass any appropriate data from the main code to the user
function.

Results: The elementsin thelist are al visited, with the user function being invoked for each one.

SeeAlso: find

514 Skip List Containers

WCValSkipList<Type>::insert(), WCValSkipListSet<Type>::insert()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <weski p. h>
public:
int insert(const Type &);

Thei nsert public member function inserts avaueinto thelist. If alocation of the node to
store the value fails, then the out _of _menory exception isthrownif it isenabled. If the
exception is not enabled, the insert will not be completed.

WithaWCVal Ski pLi st Set, there must be only one equivalent element in the set. If an
element equivalent to the inserted element is already in thelist set, the list set will remain
unchanged, and the not _uni que exception isthrownif it isenabled. If the exceptionis
not enabled, the insert will not be compl eted.

Thei nsert public member function insertsavalueinto thelist. If theinsert is successful,
anon-zero will returned. A zero will be returned if the insert fails.

operat or =, WCExcept :: out _of menory, WCExcept : : not _uni que

Skip List Containers 515

WCValSkipList<Type>::isEmpty(), WCValSkipListSet<Type>::isEmpty()

Synopsis. #i ncl ude <wcski p. h>
public:
int iseEnpty() const;
Semantics: Thei sEnpt y public member function is used to determineif the list is empty.

Results: Thei sEnpt y public member function returns zero if it contains at least one entry, non-zero
if the list is empty.

See Also: entries

516 Skip List Containers

WCValSkipList<Type>::occurrencesOf()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <weski p. h>
public:
unsi gned occurrencesOf(const Type &) const;

TheoccurrencesO public member function is used to return the current number of
elements stored in the list which are equivalent to the passed value. Note that equivalenceis
based on the equivalence operator of the element type.

TheoccurrencesO public member function returns the number of elementsin thelist
which are equivalent to the passed value.

entries,find,isEnpty

Skip List Containers 517

WCValSkipList<Type>::operator =(), WCValSkipListSet<Type>::operator =()

Synopsis. #i ncl ude <wcski p. h>
public:
WCVal Ski pLi st & operator =(const WCVal Ski pList &);
WCVal Ski pLi st Set & operator =(const WCVal Ski pListSet &);

Semantics: Theoper at or = public member function is the assignment operator for the
WCVal Ski pLi st <Type> and WCVal Ski pLi st Set <Type> classes. Theleft hand
sidelistisfirst cleared using the cl ear member function, and then the right hand side list is
copied. Thelist function, exception trap states, and all of the list elements are copied. If
thereis not enough memory to copy all of the values or pointersin thelist, then only some
will be copied, and the out _of _nmenor y exception isthrown if it is enabled. The number
of entrieswill correctly reflect the number copied.

Results: Theoper at or = public member function assigns the left hand side list to be a copy of the
right hand side.

SeeAlso: cl ear, WCExcept : : out _of _nmenory

518 Skip List Containers

WCValSkipList<Type>::operator ==(), WCValSkipListSet<Type>::operator ==()

Synopsis. #i ncl ude <wcski p. h>
public:
i nt operator ==(const WCVal Ski pList &) const;
i nt operator ==(const WCVal Ski pLi stSet &) const;

Semantics: Theoper at or == public member function is the equivalence operator for the
WCVal Ski pLi st <Type> and WCVal Ski pLi st Set <Type> classes. Two list objects
are equivalent if they are the same object and share the same address.

Results: A TRUE (non-zero) value isreturned if the left hand side and right hand side list are the
same object. A FALSE (zero) valueisreturned otherwise.

Skip List Containers 519

WCValSkipList<Type>::remove(), WCValSkipListSet<Type>::remove()

Synopsis. #i ncl ude <wcski p. h>
public:
int renove(const Type &);

Semantics: Ther enpve public member function is used to remove the specified element from the list.
If an equivalent element isfound, a non-zero valueisreturned. Zero isreturned if the
element is not found. If thelistisa WCVal Ski pLi st and there is more than one element
equivalent to the specified element, then the last equivalent element added to the
WCVal Ski pLi st isremoved. Note that equivalenceis based on the equivalence operator
of the element type.

Results: The element is removed from thelist.

520 Skip List Containers

WCValSkipList<Type>::removeAll()

Synopsis:

Semantics:

Results:

#i ncl ude <weski p. h>
public:
unsi gned renoveAl | (const Type &);

Ther emoveAl | public member function is used to remove all elements equivalent to the
specified element from thelist. Zeroisreturned if no equivalent elements are found. Note
that equivalence is based on the equivalence operator of the element type.

All equivalent elements are removed from the list.

Skip List Containers 521

WCValSkipList<Type>::removeAll()

522 Skip List Containers

16 Stack Container

Stack containers maintain an ordered collection of datawhich isretrieved in the reverse order
to which the data was entered into the stack. The stack classisimplemented as a templated
class, allowing the stacking of any data type.

A second template parameter specifies the storage class used to implement the stack. The
WCVal SLi st, WCl svSLi st and WCPt r SLi st classes are appropriate storage classes.

Stack Container 523

WCStack<Type,FType>

Declared:

west ack. h

The WCSt ack<Type, FType> classisatemplated class used to create objects which
maintain data in a stack.

In the description of each member function, the text Type is used to indicate the template
parameter defining the type of the elements stored in the stack. Thetext FType isused to
indicate the template parameter defining the storage class used to maintain the stack.

For example, to create a stack of integers, the WCSt ack<i nt , WCVal SLi st<i nt> >
classcan beused. The WCSt ack<i nt *, WCPt r SLi st <i nt > > classwill createa
stack of pointersto integers. To create an intrusive stack of objects of typeisv_link (derived
from the WCSLi nk class), the WCSt ack<isv_link *, WCI svSLi st <isv_link > > class
can be used.

The WCEXxcept classisabase class of the WCSt ack<Type, FType> class and provides
theexcept i ons member function. This member function controls the exceptions which
can be thrown by the WCSt ack<Type, FType> object. No exceptions are enabled unless
they are set by the except i ons member function.

Requirements of Type

Type must provide any constructors and/or operators required by the FType class.
Public Member Functions

The following member functions are declared in the public interface:

WCSt ack() ;

WCSt ack(void *(*)(size_t), void (*)(void *, size_t));
~WCSt ack() ;

void clear();

int entries() const;

int isEnpty() const;

Type pop();

i nt push(const Type &);

Type top() const;

Sample Program Using a Stack

#i ncl ude <wcstack. h>
#i ncl ude <i ostream h>

void main() {
WCSt ack<i nt, WCVal SLi st<i nt> > st ack;

524 Stack Container

WCStack<Type,FType>

stack. push(7);
stack. push(8);
stack. push(9);
st ack. push(10);

cout << "\nNunmber of stack entries: " << stack.entries() << "\n";
cout << "Top entry = [" << stack.top() << "]\n";
whil e(!'stack.isEmpty()) {

cout << stack.pop() << "\n";

cout. flush();

Stack Container 525

WCStack<Type,FType>::WCStack()

Synopsis. #i ncl ude <wcst ack. h>
public:
WCSt ack() ;

Semantics: The public WCSt ack<Type, FType> constructor creates an empty
WCSt ack<Type, FType> object. The FType storage class constructor performs the
initialization.

Results: The public WCSt ack<Type, FType> constructor creates an initialized
WCSt ack<Type, FType> object.

SeeAlso: ~WCSt ack<Type, FType>

526 Stack Container

WCStack<Type,FType>::WCStack()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcst ack. h>

public:

WCSt ack(void *(*allocator)(size_t),
void (*deal locator)(void *, size_t));

The public WCSt ack<Type, FType> constructor creates an empty

WCSt ack<Type, FType> object. If FType iseither the WCVal SLi st or WCPt r SLi st
class, then the allocator function is registered to perform all memory allocations of the stack
elements, and the deallocator function to perform al freeing of the stack elements’ memory.
The allocator and deallocator functions areignored if FType isthe WCI svSLi st class.
These functions provide the ability to control how the allocation and freeing of memory is
performed, allowing for more efficient memory handling than the general purpose global
operator new() and oper at or del et e() canprovide. Memory management
optimizations may potentially be made through the allocator and deallocator functions, but
are not recommended before managing memory is understood and determined to be worth
while.

The allocator function shall return a pointer to allocated memory of size at least the
argument, or zero(0) if the allocation cannot be performed. Initialization of the memory
returned is performed by the WCSt ack<Type, FType> class.

The WCSt ack<Type, FType> class cals the deallocator function only on memory
allocated by the allocator function. The deallocator shall free the memory pointed to by the
first argument which is of size the second argument. The size passed to the deallocator
function is guaranteed to be the same size passed to the allocator function when the memory
was alocated.

The allocator and deallocator functions may assume that for alist object instance, the
allocator is always called with the same first argument (the size of the memory to be
allocated). If FType isthe WCVal SLi st <Type> class, then the

WCVal SLi st It enfsi ze(Type) macro returns the size of the elements which are
allocated by the allocator function. Similarly, the WCPt r SLi st | t ensi ze(Type)
macro returnsthe size of WCPt r SLi st <Type> elements.

The FType storage class constructor performsthe initialization of the stack.

The public WCSt ack<Type, FType> constructor creates an initialized
WCSt ack<Type, FType> object and registers the allocator and deallocator functions.

WCSt ack<Type, FType>, ~\WCSt ack<Type, FType>

Stack Container 527

WCStack<Type,FType>::~WCStack()

Synopsis. #i ncl ude <wcst ack. h>
public:
virtual ~WCStack();

Semantics: The public ~WCSt ack<Type, FType> destructor destroys the
WCSt ack<Type, FType> object. The FType storage class destructor performs the
destruction. The call to the public ~WCSt ack<Type, FType> destructor isinserted
implicitly by the compiler at the point where the WCSt ack<Type, FType> object goes out
of scope.

If the not _enpt y exception is enabled, the exception isthrown if the stack is not empty of
stack elements.

Results: The WCSt ack<Type, FType> object is destroyed.

SeeAlso: WCSt ack<Type, FType>, cl ear, WCExcept : : not _enpty

528 Stack Container

WCStack<Type,FType>::clear()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcst ack. h>
public:
void clear();

Thecl ear public member function is used to clear the stack object and set it to the state of
the object just after theinitial construction. The stack object is not destroyed and re-created
by this operator, so the object destructor is not invoked. The stack elements are not cleared
by the stack class. However, the class used to maintain the stack, FType, may clear the
items as part of the cl ear member function for that class. If it does not clear the items, any
stack items till in the list are lost unless pointed to by some pointer object in the program
code.

Thecl ear public member function resets the stack object to the state of the object
immediately after theinitial construction.

~WCSt ack<Type, FType>, i sEnpty

Stack Container 529

WCStack<Type,FType>::entries()

Synopsis. #i ncl ude <wcst ack. h>
public:
int entries() const;

Semantics: Theent ri es public member function is used to determine the number of stack elements
contained in the list object.

Results: The number of elements on the stack isreturned. Zero(0) is returned if there are no stack
elements.

SeeAlso: i sEmpty

530 Stack Container

WCStack<Type,FType>::isEmpty()

Synopsis. #i ncl ude <wcst ack. h>
public:
int iseEnpty() const;

Semantics: Thei sEnpt y public member function is used to determineif a stack object has any stack
elements contained in it.

Results: A TRUE value (non-zero) isreturned if the stack object does not have any stack elements
contained within it. A FALSE (zero) result isreturned if the stack contains at least one
element.

See Also; entries

Stack Container 531

WCStack<Type,FType>::pop()

Synopsis. #i ncl ude <wcst ack. h>
public:
Type pop();

Semantics: The pop public member function returns the top stack element from the stack object. The
top stack element is the last element pushed onto the stack. The stack element is also
removed from the stack.

If the stack is empty, one of two exceptions can be thrown. If the enpt y_cont ai ner
exception is enabled, then it will be thrown. Otherwise, the i ndex _r ange exception will
be thrown, if enabled.

Results: The top stack element is removed and returned. The return value is determined by the get
member function of the FType classif there are no elements on the stack.

SeeAlso: i sEnpty, push,top, WCExcept : : enpt y _cont ai ner,
WCExcept : : i ndex_range, FType: : get

532 Stack Container

WCStack<Type,FType>::push()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wcst ack. h>
public:
i nt push(const Type &);

The push public member function is used to push the data onto the top of the stack. It will
be the first element on the stack to be popped.

If the push fails, the out _of _nenory exception will be thrown, if enabled, and the stack
will remain unchanged.

The stack element is pushed onto the top of the stack. A TRUE value (non-zero) is returned
if the push is successful. A FALSE (zero) result is returned if the push fails.

pop, WCExcept : : out _of _menory

Stack Container 533

WCStack<Type,FType>::top()

Synopsis. #i ncl ude <wcst ack. h>
public:
Type top() const;

Semantics: Thet op public member function returns the top stack element from the stack object. The
top stack element is the last element pushed onto the stack. The stack element is not
removed from the stack.

If the stack is empty, one of two exceptions can be thrown. If the enpt y_cont ai ner
exception is enabled, then it will be thrown. Otherwise, the i ndex _r ange exception will
be thrown, if enabled.

Results: Thetop stack element isreturned. The return value is determined by the f i nd member
function of the FType classif there are no elements on the stack.

SeeAlso: i sEnpty, pop, WCExcept : : enpty _cont ai ner, WCExcept : : i ndex_r ange,
FType::find

534 Stack Container

17 Vector Containers

This chapter describes vector containers.

Vector Containers 535

WCPtrSortedVector<Type>, WCPtrOrderedVector<Type>

Declared: wcvector. h

The WCPt r Sor t edVect or <Type> and WCPt r Or der edVect or <Type> classes are
templated classes used to store objectsin avector. Ordered and Sorted vectors are powerful
arrays which can be resized and provide an abstract interface to insert, find and remove
elements. An ordered vector maintains the order in which elements are added, and allows
more than one copy of an element that is equivalent. The sorted vector allow only one copy
of an equivalent element, and inserts them in a sorted order. The sorted vector isless
efficient when inserting elements, but can provide afaster retrieval time.

Elements cannot be inserted into these vectors by assigning to a vector index. Vectors
automatically grow when necessary to insert an element if the r esi ze_r equi r ed
exception is not enabled.

In the description of each member function, thetext Ty pe is used to indicate the template
parameter defining the type pointed to by the pointers stored in the vector.

Note that lookups are performed on the types pointed to, not just by comparing pointers.
Two pointer elements are equivalent if the values they point to are equivalent. The values
pointed to do not need to be the same object.

The WCPt r Or der edVect or class stores elementsin the order which they are inserted
usingthei nsert, append, prependandinsertAt member functions. Linear
searches are performed to locate entries, and the less than operator is not required.

The WCPt r Sor t edVect or class stores elements in ascending order. This requires that
Type provides alessthan operator. Insertions are more expensive than inserting or
appending into an ordered vector, since entries must be moved to make room for the new
element. A binary search isused to locate elementsin a sorted vector, making searches
quicker than in the ordered vector.

Care must be taken when using the WCPt r Sor t edVect or class not to change the ordering
of the vector elements. An object pointed to by a vector element must not be changed so that
it is not equivalent to the value when the pointer was inserted into the vector. The index
operator and the member functions fi nd, first, andl ast all return pointersthe
elements pointed to by the vector elements. Lookups assume elements are in sorted order, so
you should not use the returned pointers to change the ordering of the value pointed to.

The WCPt r Vect or classisaso available. It provides aresizable and boundary safe vector
similar to standard arrays.

The WCEXcept classisabase class of the WCPt r Sor t edVect or <Type> and

WCPt r Or der edVect or <Type> classes and providesthe except i ons member
function. This member function controls the exceptions which can be thrown by the

536 Vector Containers

WCPtrSortedVector<Type>, WCPtrOrderedVector<Type>

WCPt r Sor t edVect or <Type> and WCPt r Or der edVect or <Type> objects. No
exceptions are enabled unlessthey are set by the except i ons member function.

Requirements of Type

Both the WCPt r Sor t edVect or <Type> and WCPt r Or der edVect or <Type> classes
require Type to have:

A well defined equivalence operator with constant parameters
(int operator ==(const Type &) const).

Additionally the WCPt r Sor t edVect or classrequires Type to have:

A well defined less than operator with constant parameters
(int operator <(const Type &) const).

Public Member Functions
The following member functions are declared in the public interface:

WCPt r Or der edVector (size_t = WCDEFAULT_VECTOR _LENGTH, unsi gned
= WCDEFAULT_VECTOR_RESI ZE_GROW) ;

WCPt r Or der edVect or (const WCPtr OrderedVector &);
virtual ~WCPtr O deredVector();

WCPt r Sort edVect or (size_t = WCDEFAULT_VECTOR_LENGTH, unsi gned
= WCDEFAULT_VECTOR_RESI ZE_GROW) ;

WCPt r Sort edVect or (const WCPtr SortedVector &);
virtual ~WCPtrSortedVector();

void clear();

voi d cl ear AndDest roy();

int contains(const Type *) const;

unsi gned entries() const;

Type * find(const Type *) const;

Type * first() const;

int index(const Type *) const;

int insert(Type *);

int iseEnpty() const;

Type * last() const;

int occurrencesOF(const Type *) const;

Type * renove(const Type *);

unsi gned removeAl | (const Type *);

Type * renoveAt(int);

Type * renoveFirst();

Type * renovelLast();

int resize(size_t);

Vector Containers 537

WCPtrSortedVector<Type>, WCPtrOrderedVector<Type>

The following public member functions are available for the WCPt r Or der edVect or class
only:

int append(Type *);
int insertAt(int, Type *);
int prepend(Type *);

Public Member Operators
The following member operators are declared in the public interface:

Type * & operator [](int);

Type * const & operator [](int) const;

WCPt r Or der edVect or & WCPt r Or der edVect or: : operator =(const
WCPt r Or der edVector &);

WCPt r Sort edVect or & WCPtr SortedVector::operator =(const

WCPt r Sort edVector &);

i nt WCPtrOrderedVector: :operator ==(const WCPtr OrderedVect or
&) const;

int WCPtrSortedVector::operator ==(const WCPtrSortedVector &
) const;

538 Vector Containers

WCPtrOrderedVector<Type>::WCPtrOrderedVector()

Synopsis: #i ncl ude <wcvector. h>
public:
WCPt r Or der edVect or (size_t = WCDEFAULT_VECTOR_LENGTH,
unsi gned = WCDEFAULT_VECTOR_RESI ZE_GROW) ;

Semantics:. The WCPt r Or der edVect or <Type> constructor creates an empty
WCPt r Or der edVect or object able to store the number of elements specified in the first
optional parameter, which defaults to the constant WCDEFAULT _VECTOR _LENGTH
(currently defined as 10). If the r esi ze_r equi r ed exception is not enabled, then the
second optional parameter is used to specify the value to increase the vector size when an
element isinserted into afull vector. If zero(0) is specified as the second parameter, any
attempt to insert into afull vector fails. This parameter defaults to the constant
WCDEFAULT _VECTOR_RESI ZE_GROW(currently defined as 5).

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The WCPt r Or der edVect or <Type> constructor creates an empty initialized
WCPt r Or der edVect or object.

SeeAlso: WCExcept::resize_required

Vector Containers 539

WCPtrOrderedVector<Type>::WCPtrOrderedVector()

Synopsis: #i ncl ude <wcvector. h>
public:
WCPt r Or der edVect or (const WCPtr OrderedVector &);

Semantics:. The WCPt r Or der edVect or <Type> constructor isthe copy constructor for the
WCPt r Or der edVect or class. The new vector is created with the same length and resize
value as the passed vector. All of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. The out _of _nmenory
exception isthrown if enabled in the vector being copied.

Results: The WCPt r Or der edVect or <Type> createsa WCPt r Or der edVect or object whichis
acopy of the passed vector.

SeeAlso: operator =, WCExcept::out of nenory

540 Vector Containers

WCPtrOrderedVector<Type>::~WCPtrOrderedVector()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
virtual ~WCPtrOrderedVector();

The WCPt r Or der edVect or <Type> destructor is the destructor for the

WCPt r Or der edVect or class. If the vector isnot length zero and the not _enpty
exception is enabled, the exception isthrown. Otherwise, the vector entries are cleared using
thecl ear member function. The objects which the vector entries point to are not deleted
unlessthe cl ear AndDest r oy member function is explicitly called before the destructor is
called. Thecall tothe WCPt r Or der edVect or <Type> destructor isinserted implicitly
by the compiler at the point where the WCPt r Or der edVect or object goes out of scope.

The WCPt r Or der edVect or <Type> destructor destroysan WCPt r Or der edVect or
object.

cl ear, cl ear AndDest r oy, WCEXcept : : not _enpty

Vector Containers 541

WCPtrSortedVector<Type>::WCPtrSortedVector ()

Synopsis: #i ncl ude <wcvector. h>
public:
WCPt r Sort edVector (size_t = WCDEFAULT_VECTOR_LENGTH,
unsi gned = WCDEFAULT_VECTOR_RESI ZE_GROW) ;

Semantics: TheWCPt r Sor t edVect or <Type> constructor creates an empty
WCPt r Sor t edVect or object able to store the number of elements specified in the first
optional parameter, which defaults to the constant WCDEFAULT _VECTOR _LENGTH
(currently defined as 10). If the r esi ze_r equi r ed exception is not enabled, then the
second optional parameter is used to specify the value to increase the vector size when an
element isinserted into afull vector. If zero(0) is specified as the second parameter, any
attempt to insert into afull vector fails. This parameter defaults to the constant
WCDEFAULT _VECTOR_RESI ZE_GROW(currently defined as 5).

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The WCPt r Sor t edVect or <Type> constructor creates an empty initialized
WCPt r Sor t edVect or abject.

SeeAlso: WCExcept::resize_required

542 Vector Containers

WCPtrSortedVector<Type>::WCPtrSortedVector()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
WCPt r Sort edVect or (const WCPtr SortedVector &);

The WCPt r Sor t edVect or <Type> constructor is the copy constructor for the
WCPt r Sor t edVect or class. The new vector is created with the same length and resize
value as the passed vector. All of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. The out _of _nmenory
exception isthrown if enabled in the vector being copied.

The WCPt r Sor t edVect or <Type> constructor createsa WCPt r Sor t edVect or object
which isa copy of the passed vector.

operat or =, WCExcept :: out _of nmenory

Vector Containers 543

WCPtrSortedVector<Type>::~WCPtrSortedVector()

Synopsis: #i ncl ude <wcvector. h>
public:
virtual ~WCPtrSortedVector();

Semantics: The WCPt r Sor t edVect or <Type> destructor is the destructor for the
WCPt r Sor t edVect or class. If the vector isnot length zero and the not _enpty
exception is enabled, the exception isthrown. Otherwise, the vector entries are cleared using
thecl ear member function. The objects which the vector entries point to are not deleted
unlessthe cl ear AndDest r oy member function is explicitly called before the destructor is
caled. Thecal to the WCPt r Sor t edVect or <Type> destructor isinserted implicitly by
the compiler at the point where the WCPt r Sor t edVect or object goes out of scope.

Results: The WCPt r Sor t edVect or <Type> destructor destroys an WCPt r Sor t edVect or
object.

SeeAlso: cl ear, cl ear AndDest r oy, WCEXcept : : not _enpty

544 Vector Containers

WCPtrOrderedVector<Type>::append()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wcvector. h>
public:
int append(Type *);

The append public member function appends the passed element to be the last element in
the vector. This member function has the same semantics as the
WCPt r O der edVect or: : i nsert member function.

This function is not provided by the WCPt r Sor t edVect or class, since al e ements must
beinserted in sorted order by the i nsert member function.

Severa different results can occur if the vector is not large enough for the new element. If
ther esi ze_r equi r ed exception is enabled, the exception is thrown. |f the exceptionis
not enabled, the append failsif the amount the vector isto be grown (the second parameter to
the constructor) is zero(0). Otherwise, the vector is automatically grown by the number of
elements specified to the constructor, using the r esi ze member function. If r esi ze fails,
the element is not appended to the vector and the out _of _nenory exception isthrown, if
enabled.

The append public member function appends an element to the WCPt r Or der edVect or
object. A TRUE (non-zero) valueisreturned if the append is successful. If the append fails,
aFALSE (zero) valueis returned.

i nsert,insertAt, prepend, WCExcept : : out _of _nenory,
WCEXxcept::resize_required

Vector Containers 545

WCPtrSortedVector<Type>::clear(), WCPtrOrderedVector<Type>::clear()

Synopsis: #i ncl ude <wcvector. h>
public:
void clear();

Semantics: Thecl ear public member function isused to clear the vector so that it contains no entries,
and iszero size. Objects pointed to by the vector elements are not deleted. The vector object
is not destroyed and re-created by this function, so the abject destructor is not invoked.

Results: The cl ear public member function clears the vector to have zero length and no entries.

SeeAlso: ~WCPt r Or der edVect or, cl ear AndDest r oy, operator =

546 Vector Containers

WCPtrSortedVector<Type> WCPtrOrderedVector<Type>::clearAndDestroy()

Synopsis: #i ncl ude <wcvector. h>
public:
voi d cl ear AndDest roy();

Semantics: Thecl ear AndDest r oy public member function is used to clear the vector to have zero
length and delete the objects pointed to by the vector elements. The vector object is not
destroyed and re-created by this function, so the vector object destructor is not invoked.

Results: Thecl ear AndDest r oy public member function clears the vector by deleting the objects
pointed to by the vector elements and makes the vector zero length.

See Also; cl ear

Vector Containers 547

WCPtrSortedVector<Type>,WCPtrOrderedVector<Type>::contains()

Synopsis: #i ncl ude <wcvector. h>
public:
int contains(const Type *) const;

Semantics: Thecont ai ns public member function is used to determine if avalueis contained by a
vector. Note that comparisons are done on the objects pointed to, not the pointers
themselves. A linear search is used by the WCPt r Or der edVect or classto find the value.
The WCPt r Sor t edVect or classuses abinary search.

Results: The cont ai ns public member function returns a TRUE (non-zero) value if the element is
found in the vector. A FALSE (zero) value is returned if the vector does not contain the
element.

See Also; i ndex, fi nd

548 Vector Containers

WCPtrSortedVector<Type>::entries(), WCPtrOrderedVector<Type>::entries()

Synopsis: #i ncl ude <wcvector. h>
public:
unsi gned entries() const;

Semantics: Theent ri es public member function is used to find the number of elements which are
stored in the vector.

Results: Theent ri es public member function returns the number of elementsin the vector.

SeeAlso: i sEnmpty

Vector Containers 549

WCPtrSortedVector<Type>::find(), WCPtrOrderedVector<Type>::find()

Synopsis: #i ncl ude <wcvector. h>
public:
Type * find(const Type *) const;

Semantics: Thef i nd public member function is used to find an element equivalent to the element
passed. Note that comparisons are done on the objects pointed to, not the pointers
themselves. The WCPt r Or der edVect or classuses alinear search to find the element,
and the WCPt r Sor t edVect or classuses abinary search.

Results: A pointer to the first equivalent element is returned. NULL(O) isreturned if the element is
not in the vector.

See Also: contains,first,index,|ast,occurrencest,renpve

550 Vector Containers

WCPtrSortedVector<Type>::first(), WCPtrOrderedVector<Type>::first()

Synopsis: #i ncl ude <wcvector. h>
public:
Type * first() const;

Semantics: Thef i r st public member function returns the first element in the vector. The element is
not removed from the vector.

If the vector is empty, one of two exceptions can be thrown. The enpty _cont ai ner
exception isthrown if it isenabled. Otherwise, if the i ndex _r ange exception is enabled,
itisthrown. If neither exception is enabled, afirst element of the vector is added with a
NULL value.

Results: Thef i r st public member function returns the value of the first element in the vector.

SeeAlso: | ast,renoveFi rst, WCExcept : : i ndex_r ange,
WCEXxcept::resize_required

Vector Containers 551

WCPtrSortedVector<Type>::index(), WCPtrOrderedVector<Type>::index()

Synopsis: #i ncl ude <wcvector. h>
public:
int index(const Type *) const;

Semantics: Thei ndex public member function is used find the index of the first element equivalent to
the passed element. Note that comparisons are done on the objects pointed to, not the
pointers themselves. A linear search isused by the WCPt r Or der edVect or classto find
the element. The WCPt r Sor t edVect or class uses abinary search.

Results: Thei ndex public member function returns the index of the first element equivalent to the
parameter. |If the passed valueis not contained in the vector, negative one (-1) isreturned.

SeeAlso: contains,find,insertAt,operator [],renoveAt

552 Vector Containers

WCPtrSortedVector<Type>::insert(), WCPtrOrderedVector<Type>::insert()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
int insert(Type *);

Thei nsert public member function inserts the value into the vector.

The WCPt r Or der edVect or : : i nsert function inserts the value as the last el ement of
the vector, and has the same semantics as the WCPt r Or der edVect or : : append member
function.

A binary search is performed to determine where the value should be inserted for the

WCPt r Sort edVect or: ;i nsert function. Notethat comparisons are done on the
objects pointed to, not the pointers themselves. Any elements greater than the inserted value
are copied up one index so that the new element is after all elements with value less than or
equal toit.

Severa different results can occur if the vector is not large enough for the new element. If
ther esi ze _requi r ed exception is enabled, the exception is thrown. If the exceptionis
not enabled, the insert failsif the amount the vector is to be grown (the second parameter to
the constructor) is zero(0). Otherwise, the vector is automatically grown by the number of
elements specified to the constructor, using the r esi ze member function. If r esi ze fails,
the element is not inserted to the vector and the out _of _nmenor y exception is thrown, if
enabled.

Thei nsert public member function inserts an element in to the vector. A TRUE
(non-zero) value isreturned if theinsert is successful. If theinsert fails, a FALSE (zero)
value is returned.

append, i nsert At, prepend, WCExcept : : out _of _nenory,
WCExcept : : resize_required

Vector Containers 553

WCPtrOrderedVector<Type>::insertAt()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wcvector. h>
public:
int insertAt(int, Type *);

Thei nsert At public member function inserts the second argument into the vector before
the element at index given by the first argument. If the passed index is equal to the number
of entriesin the vector, the new value is appended to the vector asthe last element. All
vector elements with indexes greater than or equal to the first parameter are copied up one
index.

Thisfunction is not provided by the WCPt r Sor t edVect or class, since al elements must
be inserted in sorted order by the i nsert member function.

If the passed index is negative or greater than the number of entriesin the vector and the

i ndex _r ange exception is enabled, the exception is thrown. If the exception is not
enabled, the new element isinserted as the first element when the index is negative, or asthe
last element when the index istoo large.

Severa different results can occur if the vector is not large enough for the new element. If
ther esi ze_requi r ed exception is enabled, the exception is thrown. If the exceptionis
not enabled, the insert failsif the amount the vector is to be grown (the second parameter to
the constructor) is zero(0). Otherwise, the vector is automatically grown by the number of
elements specified to the constructor, using the r esi ze member function. If r esi ze fails,
the element is not inserted into the vector and the out _of _nenory exception isthrown, if
enabled.

Thei nsert At public member function inserts an element into the

WCPt r Or der edVect or object before the element at the given index. A TRUE (non-zero)
valueisreturned if theinsert is successful. If theinsert fails, a FALSE (zero) valueis
returned.

append, i nsert, prepend, operator [],renoveAt,
WCEXxcept : : i ndex_r ange, WCExcept : : out _of _nenory,
WCEXxcept: :resize_required

554 Vector Containers

WCPtrSortedVector<Type>WCPtrOrderedVector<Type>::isEmpty()

Synopsis: #i ncl ude <wcvector. h>
public:
int iseEnpty() const;

Semantics: Thei sEnpt y public member function is used to determineif a vector object has any entries
contained in it.

Results: A TRUE value (non-zero) isreturned if the vector object does not have any vector elements
contained withinit. A FALSE (zero) result isreturned if the vector contains at least one
element.

See Also; entries

Vector Containers 555

WCPtrSortedVector<Type>::last(), WCPtrOrderedVector<Type>::last()

Synopsis: #i ncl ude <wcvector. h>
public:
Type * last() const;

Semantics: Thel ast public member function returns the last element in the vector. The element is not
removed from the vector.

If the vector is empty, one of two exceptions can be thrown. The enpty _cont ai ner
exception isthrown if it isenabled. Otherwise, if the i ndex _r ange exception is enabled,
itisthrown. If neither exception is enabled, afirst element of the vector is added with a
NULL value.

Results: Thel ast public member function returns the value of the last element in the vector.

SeeAlso: first,renovelLast, WCExcept: : i ndex_range,
WCEXxcept::resize_required

556 Vector Containers

WCPtrSortedVector<Type>WCPtrOrderedVector<Type>::occurrencesOf()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wcvector. h>
public:
int occurrencesO(const Type *) const;

TheoccurrencesO public member function returns the number of elements contained in
the vector that are equivalent to the passed value. Note that comparisons are done on the
objects pointed to, not the pointers themselves. A linear search is used by the

WCPt r Or der edVect or classtofind thevalue. The WCPt r Sor t edVect or classusesa
binary search.

TheoccurrencesO public member function returns the number of elements equivalent
to the passed value.

contains,find,index,operator [],renoveAll

Vector Containers 557

WCPtrSortedVector<Type>WCPtrOrderedVector<Type>::operator []()

Synopsis: #i ncl ude <wcvector. h>
public:
Type * & operator [](int);
Type * const & operator [](int) const;

Semantics. operat or [] isthevector index operator. A reference to the object stored in the vector at
the given index isreturned. If aconstant vector isindexed, areference to a constant element
isreturned.

Theappend, insert, insertAt and prepend member functions are used to insert
anew element into avector, andthe r enrove, renoveAl |, renoveAt,

renoveFi r st and r enovelLast member functions remove elements. The index operator
cannot be used to change the number of entriesin the vector. Searches may be performed
usingthef i nd and i ndex member functions.

If the vector is empty, one of two exceptions can be thrown. The enpt y_cont ai ner
exception isthrown if it isenabled. Otherwise, if the i ndex _r ange exception is enabled,
itisthrown. If neither exception is enabled, afirst element of the vector is added with a
NULL value. Thiselement isadded so that areference to avalid vector element can be
returned.

If theindex value is negative and the i ndex _r ange exception is enabled, the exception is
thrown. An attempt to index an element with index greater than or equal to the number of
entries in the vector will also causethe i ndex _r ange exception to be thrown if enabled.
If the exception is not enabled, attempting to index a negative element will index the first
element in the vector, and attempting to index an element after the last entry will index the
last element.

Care must be taken when using the WCPt r Sor t edVect or class not to change the ordering
of the vector elements. The result returned by the index operator must not be assigned to or
modified in such away that it is no longer equivalent (by Type’ s equivalence operator) to
the value inserted into the vector. Failure to comply may cause lookups to work incorrectly,
since the binary search algorithm assumes elements are in sorted order.

Results: Theoperator [] public member function returns a reference to the element at the given
index. If theindex isinvalid, areferenceto the closest valid element is returned. The result
of the non-constant index operator may be assigned to.

SeeAlso: append,find,first,index,insert,insertAt,isEnpty,|ast,prepend,

remove, renoveAt, renoveAl | , renoveFirst, renovelast,
WCExcept : : enpt y_cont ai ner, WCExcept : : i ndex_r ange

558 Vector Containers

WCPtrSortedVector<Type> WCPtrOrderedVector<Type>::.operator =()

Synopsis: #i ncl ude <wcvector. h>
public:
WCPt r Or der edVect or & WCPt r Or der edVect or: : operator =(const
WCPt r Or der edVector &);
WCPt r Sort edVect or & WCPtr Sort edVect or: : operator =(const
WCPt r Sort edVector &);

Semantics: Theoper at or = public member function is the assignment operator for the class. The left
hand side vector isfirst cleared using the cl ear member function, and then the right hand
side vector is copied. The left hand side vector is made to have the same length and growth
amount as the right hand side (the growth amount is the second argument passed to the right
hand side vector constructor). All of the vector elements and exception trap states are
copied.

If the left hand side vector cannot be fully created, it will have zero length. The
out _of _nenory exception isthrown if enabled in the right hand side vector.

Results: Theoper at or = public member function assigns the left hand side vector to be a copy of
the right hand side.

SeeAlso: cl ear, cl ear AndDest r oy, WCExcept : : out _of _nmenory

Vector Containers 559

WCPtrSortedVector<Type>WCPtrOrderedVector<Type>::operator ==()

Synopsis:

Semantics:

Results:

#i ncl ude <wcvector. h>

public:

int WCPtrOrderedVector::operator ==(const WCPtr OrderedVect or
&) const;

int WCPtrSortedVector::operator ==(const WCPtrSortedVector &
) const;

Theoper at or == public member function is the equivalence operator for the class. Two
vector objects are equivalent if they are the same object and share the same address.

A TRUE (non-zero) valueis returned if the left hand side and right hand side vectors are the
same object. A FALSE (zero) valueisreturned otherwise.

560 Vector Containers

WCPtrOrderedVector<Type>::prepend()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
int prepend(Type *);

The pr epend public member function inserts the passed element to be the first element in
the vector. All vector elements contained in the vector are copied up one index.

This function is not provided by the WCPt r Sor t edVect or class, since al elements must
beinserted in sorted order by the i nsert member function.

Severa different results can occur if the vector is not large enough for the new element. If
ther esi ze_r equi r ed exception is enabled, the exception isthrown. |f the exceptionis
not enabled, the prepend fails if the amount the vector is to be grown (the second parameter
to the constructor) is zero(0). Otherwise, the vector is automatically grown by the number of
elements specified to the constructor, using the r esi ze member function. If r esi ze fails,
the element is not inserted to the vector and the out _of _nenor y exception isthrown, if
enabled.

The pr epend public member function prepends an element to the
WCPt r Or der edVect or object. A TRUE (non-zero) value isreturned if theinsert is
successful. If theinsert fails, a FALSE (zero) valueis returned.

append, i nsert,insert At, WCExcept : : out _of _nenory,
WCEXxcept: :resize_required

Vector Containers 561

WCPtrSortedVector<Type>::remove(), WCPtrOrderedVector<Type>::remove()

Synopsis: #i ncl ude <wcvector. h>
public:
Type * renove(const Type *);

Semantics: Ther enpve public member function removes the first element in the vector which is
equivalent to the passed value. Note that comparisons are done on the objects pointed to, not
the pointers themselves. All vector elements stored after the removed elements are copied
down one index.

A linear search is used by the WCPt r Or der edVect or classto find the element being
removed. The WCPt r Sor t edVect or class uses abinary search.

Results: Ther enpve public member function removes the first element in the vector which is
equivalent to the passed value. The removed pointer isreturned. If the vector did not
contain an equivalent value, NULL(O) is returned.

SeeAlso: cl ear, cl ear AndDestroy, fi nd, renoveAl | , renoveAt, r enoveFi rst,
renovelast

562 Vector Containers

WCPtrSortedVector<Type>WCPtrOrderedVector<Type>::removeAll()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
unsi gned renoveAl | (const Type *);

Ther emoveAl | public member function removes all elements in the vector which are
equivalent to the passed value. Note that comparisons are done on the objects pointed to, not
the pointers themselves. All vector elements stored after the removed elements are copied
down one or more indexes to take the place of the removed elements.

A linear search is used by the WCPt r Or der edVect or classto find the elements being
removed. The WCPt r Sor t edVect or class uses abinary search.

Ther enoveAl | public member function removes all elementsin the vector which are
equivalent to the passed value. The number of elements removed is returned.

cl ear, cl ear AndDest r oy, fi nd, occurrencesO , renove, r enoveAt ,
renoveFirst, renovelast

Vector Containers 563

WCPtrSortedVector<Type>WCPtrOrderedVector<Type>::removeAt()

Synopsis: #i ncl ude <wcvector. h>
public:
Type * renoveAt(int);

Semantics: Ther enmpbveAt public member function removes the element at the given index. All vector
elements stored after the removed elements are copied down one index.

If the vector is empty and the enpt y _cont ai ner exception is enabled, the exception is
thrown.

If an attempt to remove an element with a negative index is made and the i ndex_r ange
exception is enabled, the exception isthrown. If the exception is not enabled, the first
element is removed from the vector. Attempting to remove an element with index greater or
equal to the number of entries in the vector also causesthe i ndex_r ange exception to be
thrown if enabled. The last element in the vector is removed if the exception is not enabled.

Results: Ther emoveAt public member function removes the element with the given index. If the
index isinvalid, the closest element to the given index isremoved. The removed pointer is
returned. If the vector was empty, NULL(O) is returned.

SeeAlso: cl ear,cl ear AndDestroy, i nsert At,operator [],renove,renoveAl |,
removeFi rst, renovelast

564 Vector Containers

WCPtrSortedVector<Type>WCPtrOrderedVector<Type>::removeFirst()

Synopsis: #i ncl ude <wcvector. h>
public:
Type * renoveFirst();

Semantics: Ther enoveFi r st public member function removes the first element from avector. All
other vector elements are copied down one index.

If the vector is empty and the enpt y _cont ai ner exception is enabled, the exception is
thrown.

Results: Ther enoveFi r st public member function removes the first element from the vector. The
removed pointer is returned. If the vector was empty, NULL(0) is returned.

SeeAlso: cl ear,cl ear AndDestroy, first,renove, renoveAt, renoveAl |,
renmovelLast

Vector Containers 565

WCPtrSortedVector<Type>WCPtrOrderedVector<Type>::removeLast()

Synopsis: #i ncl ude <wcvector. h>
public:
Type * renovelLast();

Semantics: Ther enpvelast public member function removes the last element from avector. If the
vector is empty and the enpt y _cont ai ner exception is enabled, the exception is thrown.

Results: Ther emovelast public member function removes the last element from the vector. The
removed pointer isreturned. If the vector was empty, NULL(O) isreturned.

SeeAlso: cl ear, cl ear AndDest roy, | ast,renove, renoveAt, renoveAl |,
renoveFi r st

566 Vector Containers

WCPtrSortedVector<Type>::resize(), WCPtrOrderedVector<Type>::resize()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
int resize(size_t new_size);

Ther esi ze public member function is used to change the vector size to be able to store
new_size elements. If new_sizeislarger than the previous vector size, al elements are
copied into the newly sized vector, and new elements can be added using the append,
insert, insertAt, and prepend member functions. If the vector isresized to a
smaller size, the first new_size elements are copied (all vector elementsif the vector
contained new_size or fewer elements). The objects pointed to by the remaining elements are
not deleted.

If the resize cannot be performed and the out _of _nmenor y exception is enabled, the
exception is thrown.

The vector isresized to new_size. A TRUE value (non-zero) isreturned if theresizeis
successful. A FALSE (zero) result isreturned if the resize fails.

WCExcept : : out _of _nenory

Vector Containers 567

WCPtrVector<Type>

Declared: wcvector. h

The WCPt r Vect or <Type> classis atemplated class used to store objectsin avector.
Vectors are similar to arrays, but vectors perform bounds checking and can be resized.
Elements are inserted into the vector by assigning to a vector index.

The WCPt r Or der edVect or and WCPt r Sor t edVect or classes are also available.
They provide amore abstract view of the vector and additional functionality, including
finding and removing elements.

In the description of each member function, thetext Ty pe isused to indicate the template
parameter defining the type pointed to by the pointers stored in the vector.

The WCEXxcept classis abase class of the WCPt r Vect or <Type> class and provides the
except i ons member function. This member function controls the exceptions which can
be thrown by the WCPt r Vect or <Type> object. No exceptions are enabled unlessthey are
set by the except i ons member function.

Requirements of Type
The WCPt r Vect or <Type> class requires nothing from Type.
Public Member Functions

The following member functions are declared in the public interface:

WCPt r Vector(size_t =0);
WCPt r Vector (size_t, const Type *);
WCPt r Vect or (const WCPtrVector &);
virtual ~WCPtrVector();

void clear();

voi d cl ear AndDest roy();

size_t length() const;

int resize(size_t);

Public Member Operators

The following member operators are declared in the public interface:
Type * & operator [](int);

Type * const & operator [](int) const;

WCPt r Vector & operator =(const WCPtrVector &);
i nt operator ==(const WCPtrVector &) const;

568 Vector Containers

WCPtrVector<Type>::WCPtrVector()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wcvector. h>

public:

WCPt r Vector(size_t =0);

The public WCPt r Vect or <Type> constructor createsa WCPt r Vect or <Type> object
able to store the number of elements specified in the optional parameter, which defaultsto
zero. All vector elements are initialized to NULL(0).

If the vector object cannot be fully initialized, the vector is created with length zero.

The public WCPt r Vect or <Type> constructor creates an initialized
WCPt r Vect or <Type> object with the specified length.

WCPt r Vect or <Type>, ~WCPt r Vect or <Type>

Vector Containers 569

WCPtrVector<Type>::WCPtrVector()

Synopsis: #i ncl ude <wcvector. h>
public:
WCPt r Vector (size_t, const Type *);

Semantics: The public WCPt r Vect or <Type> constructor createsa WCPt r Vect or <Type> object
able to store the number of elements specified by the first parameter. All vector elements are
initialized to the pointer value given by the second parameter.

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The public WCPt r Vect or <Type> constructor creates an initialized

WCPt r Vect or <Type> object with the specified length and elements set to the given

value.

See Also: WCPt r Vect or <Type>, ~WCPt r Vect or <Type>

570 Vector Containers

WCPtrVector<Type>::WCPtrVector()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
WCPt r Vect or (const WCPtrVector &);

The public WCPt r Vect or <Type> constructor is the copy constructor for the
WCPt r Vect or <Type> class. The new vector is created with the same length as the given
vector. All of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. The out _of _nmenory
exception isthrown if enabled in the vector being copied.

The public WCPt r Vect or <Type> constructor createsa WCPt r Vect or <Type> object
which isa copy of the passed vector.

operat or =, WCExcept :: out _of nmenory

Vector Containers 571

WCPtrVector<Type>::~WCPtrVector()

Synopsis: #i ncl ude <wcvector. h>
public:
virtual ~WCPtrVector();

Semantics: The public ~WCPt r Vect or <Type> destructor is the destructor for the
WCPt r Vect or <Type> class. If the vector isnot length zero and the not _enpty
exception is enabled, the exception isthrown. Otherwise, the vector elements are cleared
using the cl ear member function. The objects which the vector elements point to are not
deleted unlessthe cl ear AndDest r oy member function is explicitly called before the
destructor iscalled. The call to the public ~WCPt r Vect or <Type> destructor isinserted
implicitly by the compiler at the point where the WCPt r Vect or <Type> object goes out of
scope.

Results: The public ~WCPt r Vect or <Type> destructor destroys an WCPt r Vect or <Type>
object.

SeeAlso: cl ear, cl ear AndDest r oy, WCEXcept : : not _enpty

572 Vector Containers

WCPtrVector<Type>::clear()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wcvector. h>
public:
void clear();

Thecl ear public member function is used to clear the vector so that it is of zero length.
Objects pointed to by the vector elements are not deleted. The vector object is not destroyed
and re-created by this function, so the object destructor is not invoked.

The cl ear public member function clears the vector to have zero length and no vector
elements.

~WCPt r Vect or <Type>, cl ear AndDest r oy, operator =

Vector Containers 573

WCPtrVector<Type>::.clearAndDestroy()

Synopsis: #i ncl ude <wcvector. h>
public:
voi d cl ear AndDest roy();

Semantics: Thecl ear AndDest r oy public member function is used to clear the vector to have zero
length and delete the objects pointed to by the vector elements. The vector object is not
destroyed and re-created by this function, so the vector object destructor is not invoked.

Results: Thecl ear AndDest r oy public member function clears the vector by deleting the objects
pointed to by the vector elements and makes the vector zero length.

See Also; cl ear

574 Vector Containers

WCPtrVector<Type>::length()

Synopsis: #i ncl ude <wcvector. h>
public:
size_t length() const;

Semantics: Thel engt h public member function is used to find the number of elements which can be
stored in the WCPt r Vect or <Type> object.

Results: Thel engt h public member function returns the length of the vector.

See Also: resi ze

Vector Containers 575

WCPtrVector<Type>::operator [|()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wcvector. h>

public:

Type * & operator [](int);

Type * const & operator [](int) const;

operat or [] isthevector index operator. A referenceto the object stored in the vector at
the given index isreturned. If aconstant vector isindexed, areference to a constant element
isreturned. The index operator of a non-constant vector isthe only way to insert an element
into the vector.

If an attempt to access an element with index greater than or equal to the length of a
non-constant vector ismade and the r esi ze _r equi r ed exception is enabled, the
exception isthrown. If the exception is not enabled, the vector is automatically resized using
ther esi ze member function to have length the index value plus one. New vector elements
areinitialized to NULL(0). If theresizefailed, and the out _of _menory exceptionis
enabled, the exception isthrown. If the exception is not enabled and the resize failed, the last
element isindexed (a new element if the vector was zero length). If anegative vaueis used
to index the non-constant vector and the i ndex _r ange exception is enabled, the exception
isthrown. If the exception is not enabled and the vector is empty, the r esi ze_r equi r ed
exception may be thrown.

An attempt to index an empty constant vector may cause one of two exceptions to be thrown.
If the enpt y_cont ai ner exception isenabled, it isthrown. Otherwise, the

i ndex_r ange exception isthrown, if enabled. If neither exception is enabled, afirst
vector element is added and indexed (so that areference to avalid element can be returned).

Indexing with a negative value or avalue greater than or equal to the length of a constant
vector causesthe i ndex _r ange exception to be thrown, if enabled.

Theoper at or [] public member function returns a reference to the element at the given
index. If theindex isinvalid, areference to the closest valid element isreturned. The result
of the non-constant index operator may be assigned to.

resi ze, WCExcept : : enpt y_cont ai ner, WCExcept : : i ndex_r ange,
WCEXxcept : : out _of _nmenory, WCExcept : : resi ze_requi red

576 Vector Containers

WCPtrVector<Type>::operator =()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
WCPt r Vector & operator =(const WCPtrVector &);

Theoper at or = public member function is the assignment operator for the

WCPt r Vect or <Type> class. Theleft hand side vector isfirst cleared using the cl ear
member function, and then the right hand side vector is copied. The left hand side vector is
made to have the same length as the right hand side. All of the vector elements and
exception trap states are copied.

If the left hand side vector cannot be fully created, it will have zero length. The
out _of _nenory exception isthrown if enabled in the right hand side vector.

Theoper at or = public member function assigns the left hand side vector to be a copy of
the right hand side.

cl ear, cl ear AndDest r oy, WCExcept : : out _of _nmenory

Vector Containers 577

WCPtrVector<Type>::operator ==()

Synopsis: #i ncl ude <wcvector. h>
public:
i nt operator ==(const WCPtrVector &) const;

Semantics: Theoper at or == public member function is the equivalence operator for the
WCPt r Vect or <Type> class. Two vector objects are equivalent if they are the same
object and share the same address.

Results: A TRUE (non-zero) value isreturned if the left hand side and right hand side vectors are the
same object. A FALSE (zero) valueisreturned otherwise.

578 Vector Containers

WCPtrVector<Type>::resize()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
int resize(size_t new_size);

Ther esi ze public member function is used to change the vector size to be able to store
new_size elements. If new_sizeislarger than the previous vector size, al elementswill be
copied into the newly sized vector, and new elements areinitialized to NULL (0). If the
vector isresized to asmaller size, the first new_size elements are copied. The objects
pointed to by the remaining elements are not deleted.

If the resize cannot be performed and the out _of _nmenor y exception is enabled, the
exception is thrown.

The vector isresized to new_size. A TRUE value (non-zero) isreturned if theresizeis
successful. A FALSE (zero) result isreturned if the resize fails.

WCExcept : : out _of _menory

Vector Containers 579

WCValSortedVector<Type>, WCValOrderedVector<Type>

Declared: wcvector. h

TheWCVal Sort edVect or <Type> and WCVal Or der edVect or <Type> classes are
templated classes used to store objectsin avector. Ordered and Sorted vectors are powerful
arrays which can be resized and provide an abstract interface to insert, find and remove
elements. An ordered vector maintains the order in which elements are added, and allows
more than one copy of an element that is equivalent. The sorted vector allow only one copy
of an equivalent element, and inserts them in a sorted order. The sorted vector isless
efficient when inserting elements, but can provide afaster retrieval time.

Elements cannot be inserted into these vectors by assigning to a vector index. Vectors
automatically grow when necessary to insert an element if the r esi ze_r equi r ed
exception is not enabled.

In the description of each member function, thetext Ty pe is used to indicate the template
parameter defining the type of the elements stored in the vector.

Vaues are copied into the vector, which could be undesirable if the stored objects are
complicated and copying is expensive. Value vectors should not be used to store objects of a
base classif any derived types of different sizes would be stored in the vector, or if the
destructor for a derived class must be called.

TheWCVal Or der edVect or class stores elementsin the order which they are inserted
usingthei nsert, append, prependandinsertAt member functions. Linear
searches are performed to locate entries, and the less than operator is not required.

The WCVal Sor t edVect or class stores elementsin ascending order. Thisrequires that
Type provides alessthan operator. Insertions are more expensive than inserting or
appending into an ordered vector, since entries must be moved to make room for the new
element. A binary search isused to locate elementsin a sorted vector, making searches
quicker than in the ordered vector.

Care must be taken when using the WCVal Sor t edVect or class not to change the ordering
of the vector elements. The result returned by the index operator must not be assigned to or
modified in such away that it is no longer equivalent to the value inserted into the vector.

L ookups assume elements are in sorted order.

TheWCVal Vect or classisaso available. It provides aresizable and boundary safe vector
similar to standard arrays.

The WCEXcept classisabase class of the WCVal Sort edVect or <Type> and

WCVal Or der edVect or <Type> classes and providesthe except i ons member
function. This member function controls the exceptions which can be thrown by the

580 Vector Containers

WCValSortedVector<Type>, WCValOrderedVector<Type>

WCVal Sort edVect or <Type> and WCVal Or der edVect or <Type> objects. No
exceptions are enabled unlessthey are set by the except i ons member function.

Requirements of Type

Both the WCVal Sort edVect or <Type> and WCVal Or der edVect or <Type> classes
require Type to have:

A default constructor (Type: : Type()).
A well defined copy constructor (Type: : Type(const Type &)).

A well defined assignment operator
(Type & operator =(const Type &)).

Thefollowing override of oper at or new() if Type overridesthe global oper at or

new() :

void * operator new size_t, void *ptr) { return(ptr); }

A well defined equivalence operator with constant parameters
(int operator ==(const Type &) const).

Additionally the WCVal Sort edVect or classrequires Type to have:

A well defined less than operator with constant parameters
(int operator <(const Type &) const).

Public Member Functions
The following member functions are declared in the public interface:

WCVal Or der edVector (size_t = WCDEFAULT_VECTOR _LENGTH, unsi gned
= WCDEFAULT_VECTOR_RESI ZE_GROW) ;

WCVal Or der edVect or (const WCVal OrderedVector &);

virtual ~WCVal OrderedVector();

WCVal Sort edVector(size_t = WCDEFAULT_VECTOR_LENGTH, unsi gned
= WCDEFAULT_VECTOR _RESI ZE_GROW) ;

WCVal Sort edVect or (const WCVal SortedVector &);

virtual ~WCVal SortedVector();

void clear();

int contains(const Type &) const;

unsi gned entries() const;

int find(const Type & Type &) const;

Type first() const;

Vector Containers 581

WCValSortedVector<Type>, WCValOrderedVector<Type>

int index(const Type &) const;
int insert(const Type &);

int iseEnpty() const;

Type last() const;

int occurrencesOF(const Type &) const;
int remove(const Type &);

unsi gned removeAl | (const Type &);
int removeAt(int);

int removeFirst();

i nt renovelLast ();

int resize(size_t);

The following public member functions are available for the WCVal Or der edVect or class
only:

i nt append(const Type &);
int insertAt(int, const Type &);
i nt prepend(const Type &);

Public Member Operators
The following member operators are declared in the public interface:

Type & operator [](int);

const Type & operator [](int) const;

WCVal Or der edVect or & WCVal Or der edVect or: : operator =(const
WCVal Or der edVector &);

WCVal Sort edVect or & WCVal Sort edVect or:: operator =(const

WCVal Sort edVector &);

i nt WCVal OrderedVector: : operator ==(const WCVal Or der edVect or
&) const;

i nt WCVal SortedVector::operator ==(const WCVal SortedVector &
) const;

582 Vector Containers

WCValOrderedVector<Type>::WCValOrderedVector()

Synopsis: #i ncl ude <wcvector. h>
public:
WCVal Or der edVect or (size_t = WCDEFAULT_VECTOR_LENGTH,
unsi gned = WCDEFAULT_VECTOR_RESI ZE_GROW) ;

Semantics. TheWCVal Or der edVect or <Type> constructor creates an empty
WCVal Or der edVect or object able to store the number of elements specified in the first
optional parameter, which defaults to the constant WCDEFAULT _VECTOR _LENGTH
(currently defined as 10). If the r esi ze_r equi r ed exception is not enabled, then the
second optional parameter is used to specify the value to increase the vector size when an
element isinserted into afull vector. If zero(0) is specified as the second parameter, any
attempt to insert into afull vector fails. This parameter defaults to the constant
WCDEFAULT _VECTOR_RESI ZE_GROW(currently defined as 5).

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The WCVal Or der edVect or <Type> constructor creates an empty initialized
WCVal Or der edVect or object.

SeeAlso: WCExcept::resize_required

Vector Containers 583

WCValOrderedVector<Type>::WCValOrderedVector()

Synopsis: #i ncl ude <wcvector. h>
public:
WCVal Or der edVect or (const WCVal OrderedVector &);

Semantics: TheWCVal Or der edVect or <Type> constructor isthe copy constructor for the
WCVal Or der edVect or class. The new vector is created with the same length and resize
value as the passed vector. All of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. The out _of _nmenory
exception isthrown if enabled in the vector being copied.

Results: TheWCval Or der edVect or <Type> createsa WCVal Or der edVect or object whichis
acopy of the passed vector.

SeeAlso: operator =, WCExcept::out of nenory

584 Vector Containers

WCValOrderedVector<Type>::~WCValOrderedVector()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
virtual ~WCVal OrderedVector();

The WCVal Or der edVect or <Type> destructor is the destructor for the

WCVal Or der edVect or class. If the vector isnot length zero and the not _enpt y
exception is enabled, the exception isthrown. Otherwise, the vector entries are cleared using
thecl ear member function. The cal to the WCVal Or der edVect or <Type> destructor
isinserted implicitly by the compiler at the point where the WCVal Or der edVect or object
goes out of scope.

TheWCVal Or der edVect or <Type> destructor destroysan WCVal Or der edVect or
object.

cl ear, WCExcept : : not _enpty

Vector Containers 585

WCValSortedVector<Type>::WCValSortedVector()

Synopsis: #i ncl ude <wcvector. h>
public:
WCVal Sort edVector(size_t = WCDEFAULT_VECTOR_LENGTH,
unsi gned = WCDEFAULT_VECTOR_RESI ZE_GROW) ;

Semantics. TheWCVal Sort edVect or <Type> constructor creates an empty
WCVal Sort edVect or object ableto store the number of elements specified in the first
optional parameter, which defaults to the constant WCDEFAULT _VECTOR _LENGTH
(currently defined as 10). If the r esi ze_r equi r ed exception is not enabled, then the
second optional parameter is used to specify the value to increase the vector size when an
element isinserted into afull vector. If zero(0) is specified as the second parameter, any
attempt to insert into afull vector fails. This parameter defaults to the constant
WCDEFAULT _VECTOR_RESI ZE_GROW(currently defined as 5).

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: TheWCVal Sor t edVect or <Type> constructor creates an empty initialized
WCVal Sort edVect or object.

SeeAlso: WCExcept::resize_required

586 Vector Containers

WCValSortedVector<Type>::WCValSortedVector()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
WCVal Sort edVect or (const WCVal SortedVector &);

TheWCVal Sort edVect or <Type> constructor is the copy constructor for the
WCVal Sort edVect or class. The new vector is created with the same length and resize
value as the passed vector. All of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. The out _of _nmenory
exception isthrown if enabled in the vector being copied.

TheWCVal Sort edVect or <Type> constructor createsa WCVal Sor t edVect or object
which isa copy of the passed vector.

operat or =, WCExcept :: out _of nmenory

Vector Containers 587

WCValSortedVector<Type>::~WCValSortedVector()

Synopsis: #i ncl ude <wcvector. h>
public:
virtual ~WCVal SortedVector();

Semantics. TheWCVal Sor t edVect or <Type> destructor is the destructor for the
WCVal Sort edVect or class. If the vector isnot length zero and the not _enpty
exception is enabled, the exception isthrown. Otherwise, the vector entries are cleared using
thecl ear member function. The cal to the WCVal Sor t edVect or <Type> destructor is
inserted implicitly by the compiler at the point where the WCVal Sor t edVect or object
goes out of scope.

Results: TheWCVal Sort edVect or <Type> destructor destroys an WCVal Sort edVect or
object.

SeeAlso: cl ear, WCExcept : : not _enpty

588 Vector Containers

WCValOrderedVector<Type>::append()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
i nt append(const Type &);

The append public member function appends the passed element to be the last element in
the vector. The data stored in the vector is a copy of the data passed as a parameter. This
member function has the same semantics asthe WCVal Or der edVect or: @i nsert
member function.

This function is not provided by the WCVal Sor t edVect or class, since al e ements must
beinserted in sorted order by the i nsert member function.

Severa different results can occur if the vector is not large enough for the new element. If
ther esi ze_r equi r ed exception is enabled, the exception is thrown. |f the exceptionis
not enabled, the append failsif the amount the vector isto be grown (the second parameter to
the constructor) is zero(0). Otherwise, the vector is automatically grown by the number of
elements specified to the constructor, using the r esi ze member function. If r esi ze fails,
the element is not appended to the vector and the out _of _nmenory exception isthrown, if
enabled.

The append public member function appends an element to the WCVal Or der edVect or
object. A TRUE (non-zero) valueisreturned if the append is successful. If the append fails,
aFALSE (zero) valueis returned.

i nsert,insertAt, prepend, WCExcept : : out _of nenory,
WCEXxcept::resize_required

Vector Containers 589

WCValSortedVector<Type>::clear(), WCValOrderedVector<Type>::clear()

Synopsis: #i ncl ude <wcvector. h>
public:
void clear();

Semantics: Thecl ear public member function isused to clear the vector so that it contains no entries,
and iszero size. Elements stored in the vector are destroyed using Type’ s destructor. The
vector object is not destroyed and re-created by this function, so the object destructor is not
invoked.

Results: The cl ear public member function clears the vector to have zero length and no entries.

SeeAlso: ~WCVal Or der edVect or, operator =

590 Vector Containers

WCValSortedVector<Type>,WCValOrderedVector<Type>::contains()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
int contains(const Type &) const;

The cont ai ns public member function is used to determine if avalueis contained by a
vector. A linear search isused by the WCVal Or der edVect or classto find thevalue. The
WCVal Sort edVect or classusesabinary search.

The cont ai ns public member function returns a TRUE (non-zero) value if the element is
found in the vector. A FALSE (zero) valueisreturned if the vector does not contain the
element.

i ndex, fi nd

Vector Containers 591

WCValSortedVector<Type>::entries(), WCValOrderedVector<Type>::entries()

Synopsis: #i ncl ude <wcvector. h>
public:
unsi gned entries() const;

Semantics: Theent ri es public member function is used to find the number of elements which are
stored in the vector.

Results: Theent ri es public member function returns the number of elementsin the vector.

SeeAlso: i sEnmpty

592 Vector Containers

WCValSortedVector<Type>::find(), WCValOrderedVector<Type>::find()

Synopsis: #i ncl ude <wcvector. h>
public:
int find(const Type & Type &) const;

Semantics: Thef i nd public member function is used to find an element equivalent to the first
argument. The WCVal Or der edVect or classusesalinear search to find the element, and
the WCVal Sort edVect or class uses abinary search.

Results: If an equivalent element isfound, a TRUE (non-zero) value is returned, and the second
parameter is assigned the first equivalent value. A FALSE (zero) vaueisreturned and the
second parameter is unchanged if the element is not in the vector.

See Also: contains,first,index,|ast,occurrencest,renpve

Vector Containers 593

WCValSortedVector<Type>::first(), WCValOrderedVector<Type>::first()

Synopsis: #i ncl ude <wcvector. h>
public:
Type first() const;

Semantics: Thef i r st public member function returns the first element in the vector. The element is
not removed from the vector.

If the vector is empty, one of two exceptions can be thrown. The enpty _cont ai ner
exception isthrown if it isenabled. Otherwise, if the i ndex _r ange exception is enabled,
itisthrown. If neither exception is enabled, afirst element of the vector is added with a
default value.

Results: Thef i r st public member function returns the value of the first element in the vector.

SeeAlso: | ast,renoveFi rst, WCExcept : : i ndex_r ange,
WCEXxcept::resize_required

594 Vector Containers

WCValSortedVector<Type>::index(), WCValOrderedVector<Type>::index()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wcvector. h>
public:
int index(const Type &) const;

Thei ndex public member function is used find the index of the first element equivalent to
the passed element. A linear search is used by the WCVal Or der edVect or classto find
the element. The WCVal Sor t edVect or classusesabinary search.

Thei ndex public member function returns the index of the first element equivalent to the
parameter. |If the passed valueis not contained in the vector, negative one (-1) isreturned.

contains,find,insertAt,operator [],renoveAt

Vector Containers 595

WCValSortedVector<Type>::insert(), WCValOrderedVector<Type>::insert()

Synopsis: #i ncl ude <wcvector. h>
public:
int insert(const Type &);

Semantics: Thei nsert public member function inserts the value into the vector. The data stored in the
vector isacopy of the data passed as a parameter.

TheWCVal Or der edVect or: : i nsert function insertsthe value asthe last element of
the vector, and has the same semantics as the WCVal Or der edVect or : : append member
function.

A binary search is performed to determine where the value should be inserted for the

WCVal Sort edVect or: ;i nsert function. Any elements greater than the inserted value
are copied up oneindex (using Type’' s assignment operator), so that the new element is
after all elements with value less than or equal to it.

Severa different results can occur if the vector is not large enough for the new element. If
ther esi ze _requi r ed exception is enabled, the exception is thrown. If the exceptionis
not enabled, the insert failsif the amount the vector is to be grown (the second parameter to
the constructor) is zero(0). Otherwise, the vector is automatically grown by the number of
elements specified to the constructor, using the r esi ze member function. If r esi ze fails,
the element is not inserted to the vector and the out _of _nmenor y exception is thrown, if
enabled.

Results: Thei nsert public member function inserts an element in to the vector. A TRUE
(non-zero) value isreturned if theinsert is successful. If theinsert fails, a FALSE (zero)
value is returned.

SeeAlso: append,insertAt, prepend, WCExcept : : out _of _nenory,
WCExcept : : resize_required

596 Vector Containers

WCValOrderedVector<Type>::insertAt()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
int insertAt(int, const Type &);

Thei nsert At public member function inserts the second argument into the vector before
the element at index given by the first argument. If the passed index is equal to the number
of entriesin the vector, the new value is appended to the vector asthe last element. The data
stored in the vector is a copy of the data passed as a parameter. All vector elements with
indexes greater than or equal to the first parameter are copied (using Type’ s assignment
operator) up one index.

Thisfunction is not provided by the WCVal Sor t edVect or class, since all elements must
be inserted in sorted order by the i nsert member function.

If the passed index is negative or greater than the number of entriesin the vector and the

i ndex _r ange exception is enabled, the exception is thrown. If the exception is not
enabled, the new element isinserted as the first element when the index is negative, or asthe
last element when the index is too large.

Severa different results can occur if the vector is not large enough for the new element. If
ther esi ze_requi r ed exception is enabled, the exception is thrown. If the exceptionis
not enabled, the insert failsif the amount the vector is to be grown (the second parameter to
the constructor) is zero(0). Otherwise, the vector is automatically grown by the number of
elements specified to the constructor, using the r esi ze member function. If r esi ze fails,
the element is not inserted into the vector and the out _of _nenory exception isthrown, if
enabled.

Thei nsert At public member function inserts an el ement into the

WCVal Or der edVect or object before the element at the given index. A TRUE (non-zero)
valueisreturned if the insert is successful. If theinsert fails, a FALSE (zero) valueis
returned.

append, i nsert, prepend, operator [],renoveAt,

WCEXxcept : : i ndex_r ange, WCExcept : : out _of _nenory,
WCEXxcept::resize_required

Vector Containers 597

WCValSortedVector<Type>WCValOrderedVector<Type>::isEmpty()

Synopsis: #i ncl ude <wcvector. h>
public:
int iseEnpty() const;

Semantics: Thei sEnpt y public member function is used to determineif a vector object has any entries
contained in it.

Results: A TRUE value (non-zero) isreturned if the vector object does not have any vector elements
contained withinit. A FALSE (zero) result isreturned if the vector contains at least one
element.

See Also; entries

598 Vector Containers

WCValSortedVector<Type>::last(), WCValOrderedVector<Type>::last()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
Type last() const;

Thel ast public member function returns the last element in the vector. The element is not
removed from the vector.

If the vector is empty, one of two exceptions can be thrown. The enpty _cont ai ner
exception isthrown if it isenabled. Otherwise, if the i ndex _r ange exception is enabled,
itisthrown. If neither exception is enabled, afirst element of the vector is added with a
default value.

Thel ast public member function returns the value of the last element in the vector.

first,renovelLast, WCExcept: :i ndex_range,
WCEXxcept::resize_required

Vector Containers 599

WCValSortedVector<Type>WCValOrderedVector<Type>::occurrencesOf()

Synopsis: #i ncl ude <wcvector. h>
public:
int occurrencesO(const Type &) const;

Semantics: TheoccurrencesO public member function returns the number of elements contained in
the vector that are equivalent to the passed value. A linear search isused by the

WCVal Or der edVect or classto find thevalue. The WCVal Sor t edVect or classusesa
binary search.

Results: TheoccurrencesO public member function returns the number of elements equivalent
to the passed value.

SeeAlso: contains,find,index,operator [],renoveAll

600 Vector Containers

WCValSortedVector<Type>WCValOrderedVector<Type>::operator []()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>

public:

Type & operator [](int);

const Type & operator [](int) const;

operat or [] isthevector index operator. A referenceto the object stored in the vector at
the given index isreturned. If aconstant vector isindexed, areference to a constant element
isreturned.

Theappend, insert, insertAt and prepend member functions are used to insert
anew element into avector, andthe r enrove, renoveAl |, renoveAt,

renoveFi r st and r enovelLast member functions remove elements. The index operator
cannot be used to change the number of entriesin the vector. Searches may be performed
usingthef i nd and i ndex member functions.

If the vector is empty, one of two exceptions can be thrown. The enpt y_cont ai ner
exception isthrown if it isenabled. Otherwise, if the i ndex _r ange exception is enabled,
itisthrown. If neither exception is enabled, afirst element of the vector is added with a
default value. Thiselement is added so that areference to avalid vector element can be
returned.

If theindex value is negative and the i ndex _r ange exception is enabled, the exception is
thrown. An attempt to index an element with index greater than or equal to the number of
entries in the vector will also causethe i ndex _r ange exception to be thrown if enabled.
If the exception is not enabled, attempting to index a negative element will index the first
element in the vector, and attempting to index an element after the last entry will index the
last element.

Care must be taken when using the WCVal Sor t edVect or class not to change the ordering
of the vector elements. The result returned by the index operator must not be assigned to or
modified in such away that it is no longer equivalent (by Type’ s equivalence operator) to
the value inserted into the vector. Failure to comply may cause lookups to work incorrectly,
since the binary search algorithm assumes elements are in sorted order.

Theoperator [] public member function returns a reference to the element at the given
index. If theindex isinvalid, areferenceto the closest valid element is returned. The result
of the non-constant index operator may be assigned to.

append,find,first,index,insert,insertAt,isEnpty,| ast, prepend,

remove, renoveAt, renoveAl | , renoveFirst, renovelast,
WCExcept : : enpt y_cont ai ner, WCExcept : : i ndex_r ange

Vector Containers 601

WCValSortedVector<Type>WCValOrderedVector<Type>::operator =()

Synopsis: #i ncl ude <wcvector. h>
public:
WCVal Or der edVect or & WCVal Or der edVect or: : operator =(const
WCVal Or der edVector &);
WCVal Sort edVect or & WCVal Sort edVect or: : operator =(const
WCVal SortedVector &);

Semantics: Theoper at or = public member function is the assignment operator for the class. The left
hand side vector isfirst cleared using the cl ear member function, and then the right hand
side vector is copied. The left hand side vector is made to have the same length and growth
amount as the right hand side (the growth amount is the second argument passed to the right
hand side vector constructor). All of the vector elements and exception trap states are
copied.

If the left hand side vector cannot be fully created, it will have zero length. The
out _of _nenory exception isthrown if enabled in the right hand side vector.

Results: Theoper at or = public member function assigns the left hand side vector to be a copy of
the right hand side.

SeeAlso: cl ear, WCExcept : : out _of _nmenory

602 Vector Containers

WCValSortedVector<Type>WCValOrderedVector<Type>::operator ==()

Synopsis: #i ncl ude <wcvector. h>

public:
i nt WCVal OrderedVector: :operator ==(const WCVal Or der edVect or
&) const;
i nt WCVal SortedVector::operator ==(const WCVal Sort edVector &
) const;

Semantics. Theoper at or == public member function is the equivalence operator for the class. Two

vector objects are equivalent if they are the same object and share the same address.

Results: A TRUE (non-zero) valueis returned if the left hand side and right hand side vectors are the
same object. A FALSE (zero) valueisreturned otherwise.

Vector Containers 603

WCValOrderedVector<Type>::prepend()

Synopsis: #i ncl ude <wcvector. h>
public:
i nt prepend(const Type &);

Semantics: The pr epend public member function inserts the passed element to be the first element in
the vector. The data stored in the vector is a copy of the data passed as a parameter. All
vector elements contained in the vector are copied (using Type’ s assignment operator) up
oneindex.

Thisfunction is not provided by the WCVal Sor t edVect or class, since al e ements must
beinserted in sorted order by the i nsert member function.

Severa different results can occur if the vector is not large enough for the new element. If
ther esi ze_r equi r ed exception is enabled, the exception is thrown. |f the exceptionis
not enabled, the prepend fails if the amount the vector is to be grown (the second parameter
to the constructor) is zero(0). Otherwise, the vector is automatically grown by the number of
elements specified to the constructor, using the r esi ze member function. If r esi ze fails,
the element is not inserted to the vector and the out _of _nmenory exception isthrown, if
enabled.

Results: The pr epend public member function prepends an element to the
WCVal Or der edVect or object. A TRUE (non-zero) value isreturned if theinsert is
successful. If theinsert fails, a FALSE (zero) valueis returned.

SeeAlso: append,insert,insertAt, WCExcept:: out of nenory,
WCEXxcept: :resize_required

604 Vector Containers

WCValSortedVector<Type>::remove(), WCValOrderedVector<Type>::remove()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
int renove(const Type &);

Ther emove public member function removes the first element in the vector which is
equivalent to the passed value. All vector elements stored after the removed elements are
copied (using Type’ s assignment operator) down one index.

A linear search isused by the WCVal Or der edVect or classto find the element being
removed. The WCVal Sor t edVect or classuses abinary search.

Ther enpove public member function removes the first element in the vector which is
equivalent to the passed value. A TRUE (non-zero) valueisreturned if an equivalent
element was contained in the vector and removed. If the vector did not contain an equivalent
value, aFALSE (zero) vaueisreturned.

clear,find, removeAl |, renpveAt, renoveFi rst, renpvelLast

Vector Containers 605

WCValSortedVector<Type>WCValOrderedVector<Type>::removeAll()

Synopsis: #i ncl ude <wcvector. h>
public:
unsi gned renoveAl | (const Type &);

Semantics: Ther enoveAl | public member function removes all elements in the vector which are
equivalent to the passed value. All vector elements stored after the removed elements are
copied (using Type’ s assignment operator) down one or more indexes to take the place of
the removed elements.

A linear search isused by the WCVal Or der edVect or classto find the elements being
removed. The WCVal Sor t edVect or classuses abinary search.

Results: Ther enoveAl | public member function removes all elementsin the vector which are
equivalent to the passed value. The number of elements removed is returned.

See Also: clear,find,occurrencesO, renove, renoveAt, renoveFirst, renovelLast

606 Vector Containers

WCValSortedVector<Type>WCValOrderedVector<Type>::removeAt()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvect or. h>
public:
int removeAt(int);

Ther emoveAt public member function removes the element at the given index. All vector
elements stored after the removed elements are copied (using Type’ s assignment operator)
down one index.

If the vector is empty and the enpt y _cont ai ner exception is enabled, the exception is
thrown.

If an attempt to remove an element with a negative index is made and the i ndex_r ange
exception is enabled, the exception isthrown. If the exception is not enabled, the first
element is removed from the vector. Attempting to remove an element with index greater or
equal to the number of entries in the vector also causesthe i ndex _r ange exception to be
thrown if enabled. The last element in the vector is removed if the exception is not enabled.

Ther enoveAt public member function removes the element with the given index. If the
index isinvalid, the closest element to the given index isremoved. A TRUE (non-zero)
valueisreturned if an element was removed. If the vector was empty, FALSE (zero) valueis
returned.

clear,insertAt,operator [],renmove,renoveAl |, renoveFirst,
renmovelLast

Vector Containers 607

WCValSortedVector<Type>WCValOrderedVector<Type>::removeFirst()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
int renmoveFirst();

Ther emoveFi r st public member function removes the first element from avector. All
other vector elements are copied (using Type’ s assignment operator) down one index.

If the vector is empty and the enpt y _cont ai ner exception is enabled, the exception is
thrown.

Ther emoveFi r st public member function removes the first element from the vector. A
TRUE (non-zero) valueisreturned if an element was removed. If the vector was empty,
FALSE (zero) valueis returned.

clear,first,renmove, renoveAt, renoveAl | ,renovelLast

608 Vector Containers

WCValSortedVector<Type>WCValOrderedVector<Type>::removeLast()

Synopsis: #i ncl ude <wcvector. h>
public:
i nt renovelLast ();

Semantics: Ther enpvelast public member function removes the last element from avector. If the
vector is empty and the enpt y _cont ai ner exception is enabled, the exception is thrown.

Results: Ther emovelast public member function removes the last element from the vector. A
TRUE (non-zero) value isreturned if an element was removed. If the vector was empty,
FALSE (zero) value isreturned.

See Also; clear,| ast,renmove, renoveAt, renoveAl |, renoveFi rst

Vector Containers 609

WCValSortedVector<Type>::resize(), WCValOrderedVector<Type>::resize()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
int resize(size_t new_size);

Ther esi ze public member function is used to change the vector size to be able to store
new_size elements. If new_sizeislarger than the previous vector size, al elements are
copied (using Type’ s copy constructor) into the newly sized vector, and new elements can
be added using the append, insert, insertAt, and prepend member functions.
If the vector isresized to asmaller size, the first new_size elements are copied (all vector
elementsif the vector contained new_size or fewer elements). The remaining elements are
destroyed using Type’ s destructor.

If the resize cannot be performed and the out _of _nmenor y exception is enabled, the
exception is thrown.

The vector isresized to new_size. A TRUE value (non-zero) isreturned if theresizeis
successful. A FALSE (zero) result isreturned if the resize fails.

WCExcept : : out _of _nenory

610 Vector Containers

WCValVector<Type>

Declared:

wevector. h

TheWCVal Vect or <Type> classis atemplated class used to store objectsin avector.
Vectors are similar to arrays, but vectors perform bounds checking and can be resized.
Elements are inserted into the vector by assigning to a vector index.

The WCVal Or der edVect or and WCVal Sort edVect or classes are also available.
They provide amore abstract view of the vector and additional functionality, including
finding and removing elements.

Vaues are copied into the vector, which could be undesirable if the stored objects are
complicated and copying is expensive. Vaue vectors should not be used to store objects of a
base classif any derived types of different sizes would be stored in the vector, or if the
destructor for a derived class must be called.

In the description of each member function, the text Type is used to indicate the template
parameter defining the type of the elements stored in the vector.

The WCEXcept classisabase class of the WCVal Vect or <Type> class and provides the
except i ons member function. This member function controls the exceptions which can
be thrown by the WCVal Vect or <Type> object. No exceptions are enabled unlessthey are
set by the except i ons member function.

Requirements of Type

TheWCVal Vect or <Type> classrequires Ty pe to have:

A default constructor (Type: : Type()).

A well defined copy constructor (Type: : Type(const Type &)).

Thefollowing override of oper at or new() only if Type overridesthe global
operator new():

void * operator new size_t, void *ptr) { return(ptr); }
Public Member Functions

The following member functions are declared in the public interface:
WCVal Vector(size_t = 0);

WCVal Vector (size_t, const Type &);

WCVal Vect or (const WCVal Vector &);

virtual ~WCval Vector();
void clear();

Vector Containers 611

WCValVector<Type>

size_t length() const;
int resize(size_t);

Public Member Operators

The following member operators are declared in the public interface:
Type & operator [](int);

const Type & operator [](int) const;

WCVal Vector & operator =(const WCVal Vector &);
i nt operator ==(const WCVval Vector &) const;

612 Vector Containers

WCValVector<Type>::WCValVector()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wcvector. h>

public:

WCVal Vector(size_t =0);

The public WCVal Vect or <Type> constructor createsa WCVal Vect or <Type> object
able to store the number of elements specified in the optional parameter, which defaultsto
zero. All vector elements are initialized with Type’ s default constructor.

If the vector object cannot be fully initialized, the vector is created with length zero.

The public WCVal Vect or <Type> constructor creates an initialized
WCVal Vect or <Type> object with the specified length.

WCVal Vect or <Type>, ~WCVal Vect or <Type>

Vector Containers 613

WCValVector<Type>::WCValVector()

Synopsis: #i ncl ude <wcvector. h>
public:
WCVal Vector (size_t, const Type &);

Semantics: The public WCVal Vect or <Type> constructor createsa WCVal Vect or <Type> object
able to store the number of elements specified by the first parameter. All vector elements are
initialized to the value of the second parameter using Type’ s copy constructor.

If the vector object cannot be fully initialized, the vector is created with length zero.

Results: The public WCVal Vect or <Type> constructor creates an initialized

WCVal Vect or <Type> object with the specified length and elements set to the given

value.

SeeAlso: WCVal Vect or <Type>, ~WCVal Vect or <Type>

614 Vector Containers

WCValVector<Type>::WCValVector()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <wcvector. h>
public:
WCVal Vect or (const WCVal Vector &);

The public WCVal Vect or <Type> constructor is the copy constructor for the
WCVal Vect or <Type> class. The new vector is created with the same length as the given
vector. All of the vector elements and exception trap states are copied.

If the new vector cannot be fully created, it will have length zero. The out _of _nmenory
exception isthrown if enabled in the vector being copied.

The public WCVal Vect or <Type> constructor createsa WCVal Vect or <Type> object
which isa copy of the passed vector.

operat or =, WCExcept :: out _of nmenory

Vector Containers 615

WCValVector<Type>::~WCValVector()

Synopsis: #i ncl ude <wcvector. h>
public:
virtual ~WCval Vector();

Semantics: The public ~WCVal Vect or <Type> destructor is the destructor for the
WCVal Vect or <Type> class. If the vector isnot length zero and the not _enpty
exception is enabled, the exception isthrown. Otherwise, the vector elements are cleared
using the cl ear member function. The call to the public ~\WCVal Vect or <Type>
destructor is inserted implicitly by the compiler at the point where the
WCVal Vect or <Type> object goes out of scope.

Results: The public ~WCVal Vect or <Type> destructor destroys an WCVal Vect or <Type>
object.

SeeAlso: cl ear, WCExcept : : not _enpty

616 Vector Containers

WCValVector<Type>::clear()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wcvector. h>
public:
void clear();

Thecl ear public member function is used to clear the vector so that it is of zero length.
Elements stored in the vector are destroyed using Type’ s destructor. The vector object is
not destroyed and re-created by this function, so the object destructor is not invoked.

The cl ear public member function clears the vector to have zero length and no vector
elements.

~WCVal Vect or <Type>, operator =

Vector Containers 617

WCValVector<Type>::length()

Synopsis: #i ncl ude <wcvector. h>
public:
size_t length() const;

Semantics: Thel engt h public member function is used to find the number of elements which can be
stored in the WCVal Vect or <Type> object.

Results: Thel engt h public member function returns the length of the vector.

See Also: resi ze

618 Vector Containers

WCValVector<Type>::operator []()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <wcvector. h>

public:

Type & operator [](int);

const Type & operator [](int) const;

operat or [] isthevector index operator. A referenceto the object stored in the vector at
the given index isreturned. If aconstant vector isindexed, areference to a constant element
isreturned. The index operator of a non-constant vector isthe only way to insert an element
into the vector.

If an attempt to access an element with index greater than or equal to the length of a
non-constant vector ismade and the r esi ze _r equi r ed exception is enabled, the
exception isthrown. If the exception is not enabled, the vector is automatically resized using
ther esi ze member function to have length the index value plus one. New vector elements
areinitialized using Type’ s default constructor. If the resize failed, and the

out _of _nenory exception is enabled, the exception is thrown. If the exception is not
enabled and the resize failed, the last element is indexed (a new element if the vector was
zero length). If anegative valueis used to index the non-constant vector and the

i ndex_r ange exception is enabled, the exception is thrown. If the exception is not
enabled and the vector is empty, the r esi ze _r equi r ed exception may be thrown.

An attempt to index an empty constant vector may cause one of two exceptions to be thrown.
If the enpt y_cont ai ner exceptionisenabled, it isthrown. Otherwise, the

i ndex_r ange exception isthrown, if enabled. If neither exception is enabled, afirst
vector element is added and indexed (so that areference to avalid element can be returned).

Indexing with a negative value or avalue greater than or equal to the length of a constant
vector causesthe i ndex _r ange exception to be thrown, if enabled.

Theoper at or [] public member function returns a reference to the element at the given
index. If theindex isinvalid, areference to the closest valid element isreturned. The result
of the non-constant index operator may be assigned to.

resi ze, WCExcept : : enpt y_cont ai ner, WCExcept : : i ndex_r ange,
WCEXxcept : : out _of _nmenory, WCExcept : : resi ze_requi red

Vector Containers 619

WCValVector<Type>::operator =()

Synopsis: #i ncl ude <wcvector. h>
public:
WCVal Vector & operator =(const WCVal Vector &);

Semantics: Theoper at or = public member function is the assignment operator for the
WCVal Vect or <Type> class. Theleft hand side vector isfirst cleared using the cl ear
member function, and then the right hand side vector is copied. The left hand side vector is
made to have the same length as the right hand side. All of the vector elements and
exception trap states are copied.

If the left hand side vector cannot be fully created, it will have zero length. The
out _of _nenory exception isthrown if enabled in the right hand side vector.

Results: Theoper at or = public member function assigns the left hand side vector to be a copy of
the right hand side.

SeeAlso: cl ear, WCExcept : : out _of _nmenory

620 Vector Containers

WCValVector<Type>::operator ==()

Synopsis:

Semantics:

Results:

#i ncl ude <wcvector. h>
public:
i nt operator ==(const WCval Vector &) const;

Theoper at or == public member function is the equivalence operator for the
WCVal Vect or <Type> class. Two vector objects are equivalent if they are the same
object and share the same address.

A TRUE (non-zero) value isreturned if the left hand side and right hand side vectors are the
same object. A FALSE (zero) valueisreturned otherwise.

Vector Containers 621

WCValVector<Type>::resize()

Synopsis: #i ncl ude <wcvector. h>
public:
int resize(size_t new_size);

Semantics: Ther esi ze public member function is used to change the vector size to be able to store
new_size elements. If new_sizeislarger than the previous vector size, al elementswill be
copied (using Type’ s copy constructor) into the newly sized vector, and new elements are
initialized with Type’ s default constructor. If the vector is resized to asmaller size, the
first new_size elements are copied. The remaining elements are destroyed using Type’ s
destructor.

If the resize cannot be performed and the out _of _nmenor y exception is enabled, the
exception is thrown.

Results: The vector isresized to new_size. A TRUE value (non-zero) isreturned if theresizeis
successful. A FALSE (zero) result isreturned if the resize fails.

SeeAlso: WCExcept : : out _of _nmenory

622 Vector Containers

18 Input/Output Classes

The input/output stream classes provide program access to the file system. In addition,
various options for formatting of output and reading of input are provided.

Input/Output Classes 623

filebuf

Declared:

fstreamh

Derived from:

st r eanbuf

Thef i | ebuf classisderived fromthe st r eanbuf class, and provides additional
functionality required to communicate with external files. Seek operations are supported
when the underlying file supports seeking. Both input and output operations may be
performed using af i | ebuf object, again when the underlying file supports read/write
access.

fil ebuf objectsare buffered by default, so thereserve area is alocated automatically
unlessoneis specified whenthe f i | ebuf object iscreated. The get area and put area
pointers operate as if they were tied together. Thereis only one current positionin a
fil ebuf object.

Thef i | ebuf classalowsonly the get area or the put area, but not both, to be active at a
time. Thisfollows from the capability of files opened for both reading and writing to have
operations of each type performed at arbitrary locationsin the file. When writing is
occurring, the characters are buffered in the put area. |f a seek or read operation is done, the
put area must be flushed before the next operation in order to ensure that the characters are
written to the proper location in the file. Similarly, if reading is occurring, characters are
buffered in the get area. |f awrite operation is done, the get area must be flushed and
synchronized before the write operation in order to ensure the write occurs at the proper
location inthefile. If aseek operation isdone, the get area does not have to be
synchronized, but is discarded. When the get area is empty and aread is done, the

under f | owvirtual member function reads more characters and fills the get area again.
When the put area isfull and awriteisdone, the over f | owvirtual member function writes
the characters and makes the put area empty again.

C++ programmers who wish to use files without deriving new objects do not need to
explicitly createor useaf i | ebuf object.

Public Data Members

The following data member is declared in the public interface. Itsvalueisthe default file
protection that is used when creating new files. It is primarily referenced as a default
argument in member functions.

static int const openprot;

Public Member Functions

The following member functions are declared in the public interface:

624 Input/Output Classes

filebuf

filebuf();

filebuf(filedesc);

filebuf(filedesc, char *, int);
~filebuf();

int is_open() const;

filedesc fd() const;

filebuf *attach(filedesc);

fil ebuf *open(char const *,

i 0s:: opennode,

int = filebuf::openprot);

filebuf *close();

virtual int pbackfail(int);

virtual int overflow int = EOF);
virtual int underflow();

virtual streanbuf *setbuf(char *, int);
virtual streanpos seekoff(streanoff,
i 0s::seekdir,

i 0s:: opennode);

virtual int sync();

See Also: f streanbase, st r eanbuf

Input/Output Classes 625

filebuf::attach()

Synopsis. #i ncl ude <fstream h>
public:
filebuf *filebuf::attach(fil edesc hdl);

Semantics: Theat t ach public member function connects an existing f i | ebuf object to an open file
viathefile's descriptor or handle specified by hdl. If the fi | ebuf object is already
connected to afile, the at t ach public member function fails. Otherwise, the at t ach
public member function extracts information from the file system to determine the
capabilities of the file and hencethe f i | ebuf object.

Results: Theat t ach public member function returns a pointer to the f i | ebuf object on success,
otherwise NULL isreturned.

SeeAlso: fil ebuf,fd,open

626 Input/Output Classes

filebuf::close()

Synopsis. #i ncl ude <fstream h>
public:
filebuf *filebuf::close();

Semantics: Thecl ose public member function disconnectsthe f i | ebuf object from a connected file
and closesthefile. Any buffered output is flushed before the file is closed.

Results: The cl ose public member function returns apointer tothe f i | ebuf object on success,
otherwise NULL isreturned.

SeeAlso: filebuf,fd,is_open

Input/Output Classes 627

filebuf::fd()

Synopsis. #i ncl ude <fstream h>
public:
filedesc filebuf::fd() const;
Semantics: Thef d public member function queries the state of the f i | ebuf object file handle.
Results: Thef d public member function returns the file descriptor or handle of the file to which the
fil ebuf objectiscurrently connected. If the fi | ebuf objectisnot currently connected
to afile, EOF isreturned.

SeeAlso: filebuf::attach,is_open

628 Input/Output Classes

filebuf::filebuf()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <fstream h>
public:
filebuf::filebuf();

Thisform of the public f i | ebuf constructor createsa f i | ebuf object that is not currently
connected to any file. A call to the f d member function for this created f i | ebuf object
returns EOF, unless afile is connected using the at t ach member function.

Thepublicfi | ebuf constructor producesa f i | ebuf object that isnot currently
connected to any file.

~fil ebuf,attach, open

Input/Output Classes 629

filebuf:filebuf()

Synopsis. #i ncl ude <fstream h>
public:
filebuf::filebuf(filedesc hdl);

Semantics: Thisform of the public fi | ebuf constructor createsa f i | ebuf object that is connected to
an open file. Thefileis specified viathe hdl parameter, which is afile descriptor or handle.

Thisform of thepublic f i | ebuf constructor is similar to using the default constructor, and
calling the at t ach member function. A call to the f d member function for this created
fil ebuf object returnshdl.

Results: Thepublicfi | ebuf constructor producesa fi | ebuf object that is connected to hdl.

SeeAlso: ~fil ebuf,attach, open

630 Input/Output Classes

filebuf::filebuf()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <fstream h>
public:
filebuf::filebuf(filedesc hdl, char *buf, int len);

Thisform of the public f i | ebuf constructor createsa f i | ebuf object that is connected to
an open file and that uses the buffer specified by buf and len. Thefileis specified viathe hdl
parameter, which is afile descriptor or handle. If buf is NULL and/or lenisless than or equal
to zero, the f i | ebuf object isunbuffered, so that reading and/or writing take place one
character at atime.

Thisform of thepublic f i | ebuf constructor is similar to using the default constructor, and
calingtheat t ach and set buf member functions.

Thepublicfi | ebuf constructor constructor producesa f i | ebuf object that is connected
to hdl.

~fil ebuf, attach, open, set buf

Input/Output Classes 631

filebuf::~filebuf()

Synopsis. #i ncl ude <fstream h>
public:
filebuf::~filebuf();

Semantics: Thepublic ~f i | ebuf destructor closesthefileif it was explicitly opened using the open
member function. Otherwise, the destructor takes no explicit action. The st r eanbuf
destructor is called to destroy that portion of the f i | ebuf object. The call to the public
~fi | ebuf destructor isinserted implicitly by the compiler at the point wherethe fi | ebuf
object goes out of scope.

Results: Thefi | ebuf objectisdestroyed.

See Also: ~fil ebuf, cl ose

632 Input/Output Classes

filebuf::is_open()

Synopsis. #i ncl ude <fstream h>
public:
int filebuf::is_open();
Semantics: Thei s_open public member function queriesthe f i | ebuf object state.

Results: Thei s_open public member function returns a non-zero valueif the f i | ebuf objectis
currently connected to afile. Otherwise, zerois returned.

SeeAlso: filebuf::attach, cl ose,fd,open

Input/Output Classes 633

filebuf::open()

Synopsis. #i ncl ude <fstream h>
public:
filebuf *filebuf::open(const char *nane,
i 0s::opennmode node,
int prot = filebuf::openprot);

Semantics: The open public member function is used to connect the f i | ebuf object to afile specified
by the name parameter. Thefile is opened using the specified mode. For details about the
mode parameter, see the description of | 0s: : opennpde. The prot parameter specifiesthe
file protection attributes to use when creating afile.

Results: The open public member function returns a pointer to the f i | ebuf object on success,
otherwise NULL isreturned.

SeeAlso: fil ebuf,cl ose,i s_open, openpr ot

634 Input/Output Classes

filebuf::openprot

Synopsis:

Semantics:

See Also:

#i ncl ude <fstream h>
public:
static int const filebuf::openprot;
The openpr ot public member datais used to specify the default file protection to be used
when creating new files. Thisvalueisused as the default if no user specified valueis
provided.
The default value is octal 0644. Thisisgeneraly interpreted as follows:
» Owner: read/write
* Group: read
* World: read
Note that not all operating systems support all hits.

fil ebuf,open

Input/Output Classes 635

filebuf::overflow()

Synopsis. #i ncl ude <fstream h>
public:
virtual int filebuf::overflow int ch = ECF);

Semantics: Theover f | ow public virtual member function provides the output communication to the
filetowhichthefi | ebuf objectisconnected. Member functionsinthe st r eanbuf class
call theover f | owpublic virtual member function for the derived class when the put area is
full.

Theover f | owpublic virtual member function performs the following steps:

1. If no buffer is present, abuffer is allocated with the st r eanbuf : : al | ocat e
member function, which may call the doal | ocat e virtual member function.
The put area isthen set up. If, after calling st r eanbuf : : al | ocat e, no
buffer is present, the f i | ebuf object isunbuffered and ch (if not EQF) iswritten
directly to the file without buffering, and no further action is taken.

2. Iftheget areaispresent, it isflushed with acall to the sync virtual member
function. Note that the get area won't be present if a buffer was set up in step 1.

3. If chisnot ECF, it isadded to the put area, if possible.

4. Any charactersin the put area are written to thefile.

5. Theput area pointers are updated to reflect the new state of the put area. If the
write did not complete, the unwritten portion of the put area is still present. If the
put area was full before the write, ch (if not ECF) is placed at the start of the put

area. Otherwise, the put areais empty.

Results: Theover f | owpublic virtual member function returns __NOT _ECF on success, otherwise
EOF isreturned.

SeeAlso: streanbuf::overfl ow
filebuf::underfl ow

636 Input/Output Classes

filebuf::pbackfail()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <fstream h>
public:
virtual int filebuf::pbackfail(int ch);

The pbackf ai | public virtual member function handles an attempt to put back a character
when there is no room at the beginning of the get area. The pbackf ai | public virtual
member function first callsthe sync virtual member function to flush the put area and then
it attempts to seek backwards over ch in the associated file.

The pbackf ai | public virtual member function returns ch on success, otherwise EOF is
returned.

st reanmbuf : : pbackf ai |

Input/Output Classes 637

filebuf::seekoff()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <fstream h>

public:

virtual streanpos filebuf::seekoff(streanoff offset,
ios::seekdir dir,

i 0s::opennode node);

Theseekof f public virtual member function is used to position the fi | ebuf object (and
hence the file) to a particular offset so that subsegquent input or output operations commence
from that point. The offset is specified by the offset and dir parameters.

Since the get area and put area pointers are tied together for the f i | ebuf object, the mode
parameter isignored.

Before the actual seek occurs, the get area and put area of the f i | ebuf object are flushed
viathe sync virtual member function. Then, the new position in thefileis calculated and
the seek takes place.

Thedir parameter may bei os: : beg,i os::cur,orios::endandisinterpretedin
conjunction with the offset parameter as follows:

i 0s:: beg theoffsetisrelativeto the start and should be a positive value.

i 0s::cur theoffsetisrelativeto the current position and may be positive
(seek towards end) or negative (seek towards start).

i 0s::end theoffsetisrelativeto the end and should be a negative value.

If the dir parameter has any other value, or the offset parameter does not have an appropriate
sign, the seekof f public virtual member function fails.

The seekof f public virtual member function returns the new position in the file on success,
otherwise ECF is returned.

st reanbuf: : seekof f

638 Input/Output Classes

filebuf::setbuf()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <fstream h>
public:
virtual streanbuf *filebuf::setbuf(char *buf, int len);

Theset buf public virtual member function is used to offer a buffer, specified by buf and
lentothefi | ebuf object. If the buf parameter is NULL or the lenisless than or equal to
zero, therequest isto make the f i | ebuf object unbuffered.

If thefi |l ebuf objectisalready connected to afile and has a buffer, the offer is rejected.
In other words, acall to the set buf public virtual member function after the f i | ebuf
object has started to be used usually fails because the f i | ebuf object has set up a buffer.
If therequest isto makethe f i | ebuf object unbuffered, the offer succeeds.

If the buf istoo small (less than five characters), the offer isrejected. Five charactersare
required to support the default putback area.

Otherwise, the buf is acceptable and the offer succeeds.
If the offer succeeds, the st r eanbuf : : set b member function is called to set up the
pointersto the buffer. The st r eanbuf : : set b member function releases the old buffer (if

present), depending on how that buffer was allocated.

Callstothe set buf public virtual member function are usually made by a class derived
fromthef st r eamclass, not directly by a user program.

Theset buf public virtual member function returns a pointer to the f i | ebuf object on
success, otherwise NULL is returned.

st reanbuf : : set buf

Input/Output Classes 639

filebuf::sync()

Synopsis. #i ncl ude <fstream h>
public:
virtual int filebuf::sync();

Semantics: Thesync public virtual member function synchronizesthe f i | ebuf object with the
externa file or device. If the put area contains charactersit isflushed. Thisleavesthefile
positioned after the last written character. If the get area contains buffered (unread)
characters, file is backed up to be positioned after the last read character.

Note that the get area and put area never both contain characters.

Results: The sync public virtual member function returns __NOT _EOF on success, otherwise EOF is
returned.

SeeAlso: streanbuf::sync

640 Input/Output Classes

filebuf::underflow()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <fstream h>
public:
virtual int filebuf::underflow();

Theunder f | owpublic virtual member function provides the input communication from
thefiletowhichthe f i | ebuf object isconnected. Member functionsin the st r eanbuf
class call the under f | ow public virtual member function for the derived class when the get
areaisempty.

The under f | ow public virtual member function performs the following steps:

1. If noreserveareais present, abuffer is allocated with the
st reanbuf : : al | ocat e member function, which may call the doal | ocat e
virtual member function. If, after calling al | ocat e, noreserve areais present,
thefi | ebuf object isunbuffered and a one-character reserve area (plus putback
area) is set up to do unbuffered input. This buffer isembedded inthe fi | ebuf
object. The get area is set up as empty.

2. Iftheput areaispresent, it isflushed using the sync virtual member function.

3. Theunused part of the get area is used to read characters from the file connected
tothefi | ebuf object. The get area pointers are then set up to reflect the new
get area.

Theunder f | owpublic virtual member function returns the first unread character of the get
area, on success, otherwise EOF isreturned. Note that the get pointer is not advanced on

Success.

st reanbuf:: underfl ow
filebuf::overflow

Input/Output Classes 641

fstream

Declared:

fstreamh

Derived from:

See Also;

f streanbase, i ostream

Thef st r eamclassis used to accessfiles for reading and writing. The file can be opened
and closed, and read, write and seek operations can be performed.

Thef st r eamclass provides very little of its own functionality. It isderived from both the
fstreanbase andi ost reamclasses. The f st r eamconstructors, destructor and
member function provide simplified access to the appropriate equivalents in the base classes.

Of the available I/O stream classes, creating an f st r eamaobject is the preferred method of
accessing afile for both input and output.

Public Member Functions

The following public member functions are declared:

fstream();
fstrean(char const *,
i 0s::opennmpbde = io0s::in|ios::out,

int = filebuf::openprot);
fstrean(fil edesc);
fstreanm(filedesc, char *, int);

~fstream();
voi d open(char const *,
i 0s::opennmbde = io0s::in|ios::out,

int = filebuf::openprot);

fstreanbase, i fstreami ostream of stream

642 Input/Output Classes

fstream::fstream|()

Synopsis. #i ncl ude <fstream h>
public:
fstream: fstream);

Semantics: Thisform of the public f st r eamconstructor creates an f st r eamobject that is not
connected to afile. The open or at t ach member functions should be used to connect the
f st r eamobject to afile.

Results: The public f st r eamconstructor produces an f st r eamobject that is not connected to a
file

SeeAlso: ~fstreamopen,fstreanbase::attach

Input/Output Classes 643

fstream::fstream()

Synopsis. #i ncl ude <fstream h>

public:
fstream:fstream const char *nane,
i 0s::opennode node = ios::in|ios::out,

int prot = filebuf::openprot);

Semantics. Thisform of the public f st r eamconstructor createsan f st r eamobject that is connected
to the file specified by the name parameter, using the specified mode and prot parameters.
The connection is made viathe C library open function.

Results: The public f st r eamconstructor produces an f st r eamobject that is connected to the file
specified by name. If the open fails, i os: :fail bit andi os: : badbit aresetinthe
error statein theinherited i 0os object.

SeeAlso: ~f stream open, opennode, openpr ot

644 Input/Output Classes

fstream::fstream|()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <fstream h>
public:
fstream:fstream filedesc hdl);

Thisform of the public f st r eamconstructor createsan f st r eamobject that is attached to
the file specified by the hdl parameter.

The public f st r eamconstructor produces an f st r eamobject that is attached to hdl. If the
attach fails,i os: :fail bit andi os:: badbit aresetintheerror state in the inherited
i 0S object.

~fstreamfstreanbase:: attach, f streanbase: : fd

Input/Output Classes 645

fstream::fstream()

Synopsis. #i ncl ude <fstream h>
public:
fstream:fstream fil edesc hdl, char *buf, int len);

Semantics: Thisform of the public f st r eamconstructor createsan f st r eamobject that is connected
to the file specified by the hdl parameter. The buffer specified by the buf and len parameters
is offered to the associated f i | ebuf object viathe set buf member function. If the buf
parameter is NULL or the len islessthan or equa to zero, the f i | ebuf isunbuffered, so
that each read or write operation reads or writes a single character at atime.

Results: The public f st r eamconstructor produces an f st r eamobject that is attached to hdl. If the
connection to hdl fails, i os: : fail bit andi os: : badbit aresetintheerror statein the
inherited i os object. If the set buf fails, i os:: fail bit issetintheerror statein the
inherited i os object.

See Also: ~fstreamfil ebuf:: setbuf, fstreanbase:: attach

646 Input/Output Classes

fstream::~fstream()

Synopsis. #i ncl ude <fstream h>
public:
fstream: ~fstream);
Semantics: The public ~f st r eamdestructor does not do anything explicit. The call to the public
~f st r eamdestructor isinserted implicitly by the compiler at the point wherethe f st r eam
object goes out of scope.
Results: The public ~f st r eamdestructor destroys the f st r eamobject.

SeeAlso; fstream

Input/Output Classes 647

fstream::open()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <fstream h>

public:
void fstream :open(const char *nane,
i 0s::opennode node = ios::in|ios::out,

int prot = filebuf::openprot);

The open public member function connectsthe f st r eamobject to the file specified by the
name parameter, using the specified mode and prot parameters. The node parameter is
optional and usually is not specified unless additional bits(such as i os: : bi nary or

i 0S::text)aretobe specified. The connection is made viathe C library open function.

If the openfails, i os:: fail bit issetintheerror statein theinherited i 0s object.
fstreanbase: : attach, f streanbase: : cl ose, f st reanbase: : fd,

fstreanbase: :i s_open
fstream : opennode, openpr ot

648 Input/Output Classes

fstreambase

Declared:

fstreamh

Derived from:

i 0s

Derived by: i f stream of streamf stream

See Also;

Thef st r eanbase classisabase class that provides common functionality for the three
file-based classes, i f st ream of st reamand f st ream Thef streanbase classis
derived fromthe i os class, providing the stream state information, plus it provides member
functions for opening and closing files. The actua file manipulation work is performed by
thefi | ebuf class.

Itisnot intended that f st r eanbase objects be created. Instead, the user should create an
i fstream of st reamor f st r eamobject.

Protected Member Functions
The following member functions are declared in the protected interface;

fstreanbase();

fstreanbase(char const *,

i 0S:: opennode,

int = filebuf::openprot);
fstreanbase(fil edesc);

fstreanbase(fil edesc, char *, int);
~f st reanbase() ;

Public Member Functions
The following member functions are declared in the public interface:

void attach(filedesc);
void cl ose();

filedesc fd() const;

int is_open() const;

voi d open(char const *,

i 0s:: opennode,

int = filebuf::openprot);
filebuf *rdbuf() const;
void setbuf(char *, int);

fil ebuf,fstreamifstreamof stream

Input/Output Classes 649

fstreambase::attach()

Synopsis. #i ncl ude <fstream h>
public:
voi d fstreanbase::attach(filedesc hdl);

Semantics: Theat t ach public member function connectsthe f st r eanbase object to thefile
specified by the hdl parameter.

Results: If theat t ach public member function fails, i os: : fai | bit bitissetintheerror statein
theinherited i os object. The error statein the inherited i 0os object is cleared on success.

SeeAlso: fstreanbase::fd,is_open, open

650 Input/Output Classes

fstreambase::close()

Synopsis. #i ncl ude <fstream h>
public:
voi d fstreanbase::close();

Semantics: Thecl ose public member function disconnectsthe f st r eanbase object from thefile
with which it isassociated. If the f st r eanbase object is not associated with afile, the
cl ose public member function fails.

Results: If the cl ose public member function fails, i os: : fai | bi t issetintheerror statein the
inherited i os object.

SeeAlso: fstreanbase::fd,is_open, open

Input/Output Classes 651

fstreambase::fstreambase()

Synopsis. #i ncl ude <fstream h>
pr ot ect ed:
fstreanbase: : f streanbase();

Semantics: The protected f st r eanbase constructor createsan f st r eanbase object that is
initialized, but not connected to anything. The open or at t ach member function should
be used to connect the f st r eanbase object to afile.

Results: The protected f st r eanbase constructor produces an f st r eanbase object.

SeeAlso: ~fstreanbase, attach, open

652 Input/Output Classes

fstreambase::fstreambase()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <fstream h>

pr ot ect ed:

fstreanbase: : fstreanbase(char const *nane,
i 0s::opennmode node,

int prot = filebuf::openprot);

Thisprotected f st r eanbase constructor createsan f st r eanbase object that is
initialized and connected to the file indicated by name using the specified mode and prot.
Thef st r eanbase object is connected to the specified file viathe open C library
function.

The protected f st r eanbase constructor producesan f st r eanbase object. If the call to
open for thefilefails, i os: : fail bit andi os: : badbi t aresetintheerror statein the
inherited i os object.

~f st reanbase, open, opennode, openpr ot

Input/Output Classes 653

fstreambase::fstreambase()

Synopsis. #i ncl ude <fstream h>
pr ot ect ed:
fstreanbase: : fstreanbase(fil edesc hdl);

Semantics: Thisprotected f st r eanbase constructor createsan f st r eanbase object that is
initialized and connected to the open file specified by the hdl parameter.

Results: The protected f st r eanbase constructor produces an f st r eanbase object. If the attach
tothefilefails, i os::fail bit andi os:: badbit aresetintheerror statein the
inherited i os object.

See Also; ~f streanbase, att ach

654 Input/Output Classes

fstreambase::fstreambase()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <fstream h>
pr ot ect ed:
fstreanbase: : fstreanbase(fil edesc hdl, char *buf, int len);

This protected f st r eanbase constructor createsan f st r eanbase object that is
initialized and connected to the open file specified by the hdl parameter. The buffer,
specified by the buf and len parameters, is offered viathe set buf virtual member function
to beused asthereserve area for the f i | ebuf associated with the f st r eanrbase object.

The protected f st r eanbase constructor produces an f st r eanbase object. If the attach
tothefilefails, i os::fail bit andi os:: badbit aresetintheerror statein the
inherited i os object.

~f st r eanbase, at t ach, set buf

Input/Output Classes 655

fstreambase::~fstreambase()

Synopsis. #i ncl ude <fstream h>
pr ot ect ed:
fstreanbase: : ~f streanbase();

Semantics: The protected ~f st r eanbase destructor does not do anything explicit. The fi | ebuf
object associated with the f st r eanbase object is embedded withinthe f st r eanbase
object, sothef i | ebuf destructor iscaled. The i os destructor is called for that portion of
thef st r eanbase object. Thecall to the protected ~f st r eanbase destructor isinserted
implicitly by the compiler at the point wherethe f st r eanbase object goes out of scope.

Results: Thef st r eanbase object is destroyed.

SeeAlso: fstreanbase, cl ose

656 Input/Output Classes

fstreambase::is_open()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <fstream h>
public:
int fstreanbase::is_open() const;

Thei s_open public member function queries the current state of the file associated with
thef st r eanbase object. Callingthe i s _open public member function is equivalent to
calling the f d member function and testing for ECF.

Thei s_open public member function returns anon-zero value if the f st r eanbase
object is currently connected to afile, otherwise zero is returned.

fstreanbase: : attach, fd,open

Input/Output Classes 657

fstreambase::fd()

Synopsis. #i ncl ude <fstream h>
public:
filedesc fstreanbase::fd() const;

Semantics: Thef d public member function returns the file descriptor for the file to which the
f st r eanbase object is connected.

Results: Thef d public member function returns the file descriptor for the file to which the
f st reanbase object isconnected. If the f st r eanbase object isnot currently
connected to afile, EOF isreturned.

SeeAlso: fstreanbase::attach,i s_open, open

658 Input/Output Classes

fstreambase::open()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <fstream h>

public:

voi d fstreanbase:: open(const char *nane,
i 0s::opennmode node,

int prot = filebuf::openprot);

The open public member function connectsthe f st r eanbase object to the file specified
by name, using the specified mode and prot. The connection is made viathe C library open
function.

If theopenfails, i os: : fail bit issetintheerror state in theinherited i os object. The
error statein the inherited i 0s object is cleared on success.

fstreanbase: : attach, cl ose,fd,i s_open, opennode, openpr ot

Input/Output Classes 659

fstreambase::rdbuf()

Synopsis. #i ncl ude <fstream h>
public:
fil ebuf *fstreanbase::rdbuf() const;

Semantics: Ther dbuf public member function returns the address of the f i | ebuf object currently
associated with the f st r eanbase object.

Results: Ther dbuf public member function returns a pointer to the f i | ebuf object currently
associated with the f st r eanbase object If thereisno associated f i | ebuf , NULL is
returned.

See Also; i os:: rdbuf

660 Input/Output Classes

fstreambase::setbuf()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <fstream h>
public:
voi d fstreanbase::setbuf(char *buf, int len);

Theset buf public member function offers the specified buffer tothe fi | ebuf object
associated with the f st r eanbase object. The fi | ebuf may or may not rgject the offer,
depending upon its state.

If the offer isrejected, i os: : fail bit issetintheerror statein theinherited i 0s object.

fil ebuf:: setbuf

Input/Output Classes 661

ifstream

Declared: fstreamh

Derived from:
f st reanbase, i stream

Thei f st r eamclassis used to access existing files for reading. Such files can be opened
and closed, and read and seek operations can be performed.

Thei f st r eamclass provides very little of its own functionality. Derived from both the
fstreanbase andi st r eamclasses, its constructors, destructor and member functions
provide simplified access to the appropriate equivalents in those base classes.

Of the available I/O stream classes, creating an i f st r eamobject is the preferred method of
accessing afile for input only operations.

Public Member Functions

The following public member functions are declared:

i fstream);
i fstream(char const *,
i 0s::opennode = ios::in,

int = filebuf::openprot);
ifstrean(fil edesc);
ifstrean(filedesc, char *, int);

~i fstream);
voi d open(char const *,
i 0s::opennode = io0s::in,

int = filebuf::openprot);

SeeAlso: fstreamfstreanbase,i stream of stream

662 Input/Output Classes

ifstream::ifstream()

Synopsis. #i ncl ude <fstream h>
public:
ifstream:ifstream);

Semantics: Thisform of the public i f st r eamconstructor createsan i f st r eamobject that is not
connected to afile. The open or at t ach member functions should be used to connect the
i fstreamobject to afile.

Results: Thepublici f st r eamconstructor producesan i f st r eamobject that is not connected to a
file

SeeAlso: ~ifstreamopen, fstreanbase::attach

Input/Output Classes 663

ifstream::

ifstream()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <fstream h>

public:
ifstream:ifstream const char *nane,
i 0s::opennode node = io0s::in,

int prot = filebuf::openprot);

Thisform of the public i f st r eamconstructor createsan i f st r eamobject that is
connected to the file specified by the name parameter, using the specified mode and prot
parameters. The connection is made viathe C library open function.

Thepublici f st r eamconstructor produces an i f st r eamaobject that is connected to the
file specified by name. If the open fails,i os: : fail bit andi os:: badbit aresetin
the error statein the inherited i 0os object.

~i f st r eam open, opennode, openpr ot , f st reanbase: : att ach,
fstreanbase: : fd, fstreanbase: :i s_open

664 Input/Output Classes

ifstream::ifstream()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <fstream h>
public:
ifstream:ifstream(filedesc hdl);

Thisform of the public i f st r eamconstructor createsan i f st r eamobject that is attached
to the file specified by the hdl parameter.

Thepublici f st r eamconstructor produces an i f st r eamobject that is attached to hdl. If
the attach fails, i os: : fail bit andi os: : badbit aresetintheerror statein the
inherited i os object.

fstreanbase: : attach
~i f st r eam open

Input/Output Classes 665

ifstream::ifstream()

Synopsis. #i ncl ude <fstream h>
public:
ifstream:ifstream(filedesc hdl, char *buf, int len);

Semantics: Thisform of the public i f st r eamconstructor createsan i f st r eamobject that is
connected to the file specified by the hdl parameter. The buffer specified by the buf and len
parameters is offered to the associated f i | ebuf object viathe set buf member function.
If the buf parameter is NULL or the lenisless than or equal to zero, the f i | ebuf is
unbuffered, so that each read or write operation reads or writes a single character at atime.

Results: Thepublici f st r eamconstructor producesan i f st r eamobject that is attached to hdl. If
the connection to hdl fails, i os: : fai |l bit andi os: : badbi t aresetintheerror statein
theinherited i 0s object. If the set buf fails, i os:: fail bit issetintheerror statein
theinherited i os object.

See Also: f streanbase: : att ach, f st reanbase: : set buf
~i f st ream open

666 Input/Output Classes

ifstream::~ifstream|()

Synopsis. #i ncl ude <fstream h>
public:
ifstream: ~ifstrean();
Semantics: The public ~i f st r eamdestructor does not do anything explicit. The call to the public
~i f st r eamdestructor is inserted implicitly by the compiler at the point where the
i f st reamobject goesout of scope.
Results: The public ~i f st r eamdestructor destroysthe i f st r eamobject.

See Also: i fstream

Input/Output Classes 667

ifstream::open()

Synopsis. #i ncl ude <fstream h>

public:
void i fstream:open(const char *nane,
i 0s::opennode node = io0s::in,

int prot = filebuf::openprot);

Semantics. The open public member function connectsthe i f st r eamobject to the file specified by
the name parameter, using the specified mode and prot parameters. The node parameter is
optional and usually is not specified unless additional bits(such as i os: : bi nary or
i 0S: :text)aretobe specified. The connection is made viathe C library open function.

Results: If the openfails, i os: : fail bit issetintheerror statein theinherited i 0s object.
SeeAlso: fstreanbase::attach, fstreanbase: : cl ose, fstreanbase: : fd,

fstreanbase: :i s_open
i fstream : opennode, openpr ot

668 Input/Output Classes

i0S

Declared:

Derived by:

i ostream h
i stream ostream

Thei os classis used to group together common functionality needed for other derived
stream classes. It isnot intended that objects of type i os be created.

This class maintains state information about the stream. (the i 0s name can be thought of as
ashort-form for 1/0O State). Error flags, formatting flags, and values and the connection to
the buffers used for the input and output are all maintained by the i os class. No information
about the buffer itself isstored in an i 0s object, merely the pointer to the buffer

information.

Protected Member Functions
The following member functions are declared in the protected interface:

ios();
void init(streanbuf *);
void setstate(ios::iostate);

Public Enumerations
The following enumeration typedefs are declared in the public interface;

typedef int iostate;
typedef long fntflags;
typedef int opennode;
typedef int seekdir;

Public Member Functions
The following member functions are declared in the public interface:

i os(streanbuf *);

virtual ~ios();

ostream *tie() const;

ostream *tie(ostream?™*);

st reambuf *rdbuf() const;

ios::iostate rdstate() const;
os::iostate clear(ios::iostate =0);
nt good() const;

nt bad() const;

nt fail () const;

[
[
[
[
[
int eof() const;

Input/Output Classes 669

I0S

ios::iostate exceptions(ios::iostate);
ios::iostate exceptions() const;
ios::fmflags setf(ios::fntflags, ios::fmflags);
ios::fntflags setf(ios::fntflags);
ios::fmflags unsetf(ios::fmflags);
ios::fntflags flags(ios::fntflags);
ios::fmflags flags() const;

char fill(char);

char fill() const;

int precision(int);

int precision() const;

int width(int);

int width() const;

long & word(int);

void *&word(int);

static void sync_wth_stdio();

static ios::fmflags bitalloc();

static int xalloc();

Public Member Operators
The following member operators are declared in the public interface:

operator void *() const;
int operator !() const;

See Also; i ostreami streamostream streanbuf

670 Input/Output Classes

10s::bad()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>

public:

int ios::bad() const;

The bad public member function queries the state of the i os object.

The bad public member function returns anon-zero value if i os: : badbi t issetinthe
error state in theinherited i 0s object, otherwise zero is returned.

i os::clear,eof ,fail,good,iostate,operator !,operator void *,
rdstate,setstate

Input/Output Classes 671

l0s::bitalloc()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>
public:
static ios::fmflags ios::bitalloc();

Thebi t al | oc public static member function is used to allocateanew i os: : f nt f | ags
bit for use by user derived classes.

Because the bi t al | oc public static member function manipulates st at i ¢ member data,
its behavior is not tied to any one object but affects the entire class of objects. The value that
isreturned by the bi t al | oc public static member function isvalid for al objects of al
classes derived from the i os class. No subsequent call to the bi t al | oc public static
member function will return the same value as a previous call.

The bit value allocated may be used with the member functions that query and affect
ios::fntflags. Inparticular, the bit can be set withthe set f or f | ags member
functionsor the set i osf | ags manipulator, and reset with the unset f or f | ags
member functionsor ther eset i osf | ags manipulator.

There are two constants defined in <i ost r eam h> which indicate the number of bits
available when a program starts. _LAST_FORMAT _FLAGi ndicates the last bit used by the
built-in format flags described by i os: : fnt f1 ags. _LAST_FLAG BI T indicatesthe
last bit that isavailable for the bi t al | oc public static member function to allocate. The
difference between the bit positions indicates how many bits are available.

Thebi t al | oc public static member function returns the next available i os: : f nt f | ags
bit for use by user derived classes. If no more bits are available, zero is returned.

ios::fmflags

672 Input/Output Classes

i0s::clear()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>
public:
iostate ios::clear(ios::iostate flags = 0);

Thecl ear public member function is used to change the current value of i os: : i ostat e
inthei os object. i 0s: : i ost at e iscleared, all bits specified in flags are set.

The cl ear public member function returns the previousvalue of i 0s: : i ost at e.

i 0s:: bad, eof ,fail,good,i ostate,operator !,operator void *,
rdstate,setstate

Input/Output Classes 673

10S::eof()

Synopsis: #i ncl ude <i ostream h>
public:
int ios::eof() const;

Semantics: Theeof public member function queries the state of the i os object.

Results: The eof public member function returnsanon-zerovalueif i os: : eof bi t issetinthe
error state in theinherited i 0s object, otherwise zero is returned.

SeeAlso: io0s::bad,clear,fail,good,iostate,rdstate,setstate

674 Input/Output Classes

l0S::exceptions()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>

public:

ios::iostate ios::exceptions() const;
ios::iostate ios::exceptions(int enable);

Theexcept i ons public member function queries and/or sets the bits that control which
exceptionsare enabled. i 0s: : i ost at e withinthe i os object is used to enable and
disable exceptions.

When a condition arisesthat setsabitin i os: : i ost at e, acheck ismadeto seeif the
same hit is also set in the exception bits. If so, an exception is thrown. Otherwise, no
exception is thrown.

Thefirst form of the except i ons public member function looks up the current setting of
the exception bits. The bit values are those described by i os: : i ost at e.

The second form of the except i ons public member function sets the exceptions bits to
those specified in the enable parameter, and returns the current settings.

Theexcept i ons public member function returns the previous setting of the exception bits.

ios::clear,iostate,rdstate,setstate

Input/Output Classes 675

los::fail()

Synopsis: #i ncl ude <i ostream h>
public:
int ios::fail() const;

Semantics: Thef ai | public member function queries the state of the i os object.
Results: Thef ai | public member function returns anon-zero valueif i os: : fail bit or
i 0s:: badbit issetintheerror statein theinherited i os object, otherwise zero is

returned.

SeeAlso: io0s::bad,clear,eof,good,i ostate,operator !,operator void *,
rdstate,setstate

676 Input/Output Classes

los::fill()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>

public:

char ios::fill() const;

char ios::fill(char fillchar);

Thefi || public member function queries and/or setsthefill character used when the size

of aformatted object is smaller than the format width specified.

Thefirst form of thefi | | public member function looks up the current value of the fill
character.
The second form of the f i | | public member function sets thefill character to fillchar.

By default, thefill character is a space.
Thefi | | public member function returns the previous value of thefill character.

ios::fntflags, manipulator setfill

Input/Output Classes 677

l0s::flags()

Synopsis: #i ncl ude <i ostream h>
public:
ios::fmflags ios::flags() const;
ios::fmflags ios::flags(ios::fnmflags sethits);

Semantics: Thef | ags public member function is used to query and/or set the value of
ios::fmflagsinthei os object.

Thefirst form of the f | ags public member function looks up the current
ios::fmtflags vaue

The second form of the f | ags public member function setsi os: : f nt f | ags tothevaue
specified in the setbits parameter.

Note that the set f public member function only turns bits on, whilethe f | ags public
member function turns some bits on and some hits off.

Results: Thef | ags public member function returnsthe previous i os: : f mt f | ags value.

SeeAlso: ios::fntflags,setf,unsetf, manipulator dec, manipulator hex, manipulator oct ,
manipulator r eset i osf | ags, manipulator set base, manipulator set i osf | ags

678 Input/Output Classes

ios::fmtflags

Synopsis:

Semantics:

#i ncl ude <i ostream h>

public:

enum fm _fl ags {

ski pws = 0x0001, // skip whitespace

left = 0x0002, // align field to |eft edge

right = 0x0004, // align field to right edge
internal = 0x0008, // sign at left, value at right

dec = 0x0010, // decinmal conversion for integers
oct = 0x0020, // octal conversion for integers
hex = 0x0040, // hexadeci mal conversion for integers

showbase = 0x0080, // show dec/octal/hex base on out put
showpoi nt 0x0100, // show decinal and digits on out put
upper case 0x0200, // use uppercase for format characters
showpos = 0x0400, // use + for output positive nunbers
scientific = 0x0800, // use scientific notation for output
fixed = 0x1000, // use floating notation for output
uni t buf = 0x2000, // flush stream after out put

stdio = 0x4000, // flush stdout/stderr after output

basefield = dec | oct | hex,

adjustfield= left | right | internal,
floatfield = scientific | fixed
1

typedef long fntflags;

Thetypei os: : fnt _f| ags isaset of bits representing methods of formatting objects
written to the stream and interpreting objects read from the stream. The i os: : fnt fl ags
member typedef represents the same set of bits, but usesa | ong to represent the values,
thereby avoiding problems made possible by the compiler’s ability to use smaller types for
enumerations. All uses of these bits should usethe i os: : f nt f | ags member typedef.

The bit values defined by the i os: : f nt f | ags member typedef are set and read by the
member functionsset f , unset f and f | ags, aswell asthe manipulators set i osf | ags
andreseti osfl ags.

Because one field is used to store al of these bits, there are three special values used to mask
various groups of bits. Thesevaluesarenamed i os: : basefi el d,
ios::adjustfieldandios::floatfield,andarediscussed with the bits that they
are used to mask.

i 0s:: ski pws controlswhether or not whitespace characters are automatically skipped
when using an oper at or >> extractor. If i 0s: : ski pws ison, any use of the

oper at or >> extractor skips whitespace characters before inputting the next item.
Otherwise, skipping of whitespace characters must be handled by the program.

Input/Output Classes 679

los::fmtflags

ios::left,ios::right andi os::internal control theaignment of itemswritten
using an oper at or <<inserter. These bitsare usually used in conjunction with the for mat
width and fill character.

i 0s::adjustfieldcanbeusedto mask the alignment bits returned by the set f,
unset f and f | ags member functions, and for setting new values to ensure that no other
bits are accidentally affected.

When the item to be written is smaller than the format width specified, fill characters are
written to occupy the additional space. If i os: : | ef t isin effect, theitem iswrittenin the
left portion of the available space, and fill characters are written in the right portion. If

i os::right isin effect, the item iswritten in the right portion of the avail able space, and
fill characters are written in the left portion. If i 0s: : i nt er nal isin effect, any sign
character or base indicator iswritten in the left portion, the digits are written in the right
portion, and fill characters are written in between.

If no alignment is specified, i os: : ri ght isassumed.

If the item to be written is as big as or bigger than the format width specified, no fill
characters are written and the alignment is ignored.

i 0s::dec,ios::oct andi os: : hex control the base used to format integers being
written to the stream, and also control the interpretation of integers being read from the
stream.

i 0s:: basefi el d can be used to mask the base bits returned by the member functions
setf,unsetf andfl ags, and for setting new values to ensure that no other bits are
accidentally affected.

When an integer is being read from the stream, these bits control the base used for the
interpretation of the digits. If none of these bitsis set, anumber that startswith 0x or 0Xis
interpreted as hexadecimal (digits 0123456789, plusthe letters abcdef or ABCDEF), a
number that starts with 0 (zero) isinterpreted as octal (digits 01234567), otherwise the
number isinterpreted as decimal (digits 0123456789). If one of the bitsis set, then the
prefix is not necessary and the number isinterpreted according to the bit.

When any one of the integer types is being written to the stream, it can be written in decimal,
octal or hexadecimal. If none of these bitsisset, i 0s: : dec isassumed.

Ifi 0s: : dec isset (or assumed), the integer iswritten in decimal (digits 0123456789).
No prefix isincluded.

Ifi 0s:: oct isset, theinteger iswrittenin octal (digits 01234567). No sign character is
written, as the number is treated as an unsigned quantity upon conversion to octal.

680 Input/Output Classes

ios::fmtflags

Ifi 0s: : hex issat, theinteger iswritten in hexadecimal (digits 0123456789, plusthe
lettersabcdef or ABCDEF, depending on the setting of i os: : upper case). Nosign
character is written, as the number is treated as an unsigned quantity upon conversion to
hexadecimal.

i 0S:: showbase controls whether or not integers written to the stream in octal or
hexadecimal form have a prefix that indicates the base of the number. If the bit is set,
decimal numbers are written without a prefix, octal numbers are written with the prefix 0
(zero) and hexadecimal numbers are written with the prefix 0x or 0X depending on the
setting of i 0s: : upper case. Ifthei os: : showbase isnot set, no prefixes are written.

i 0s:: showpoi nt isused to control whether or not the decimal point and trailing zeroes
are trimmed when floating-point numbers are written to the stream. If the bit is set, no
trimming is done, causing the number to appear with the specified format precision. If the
bit is not set, any trailing zeroes after the decimal point are trimmed, and if not followed by
any digits, the decimal point isremoved as well.

i 0S:: upper case isusedto force to upper-case al letters used in formatting numbers,
including the letter-digits abcdef , the x hexadecimal prefix, and the e used for the
exponents in floating-point numbers.

i 0s:: showpos controls whether or not a + is added to the front of positive integers being
written to the stream. If the bit is set, the number is positive and the number is being written
in decimal, a + iswritten before the first digit.

ios::scientificandios::fixed controlstheform used for writing floating-point
numbers to the stream. Floating-point numbers can be written in scientific notation (also
called exponential notation) or in fixed-point notation.

i os::floatfi el dcanbeusedtomask thefloating-format bits returned by the member
functionsset f , unset f and f | ags, and for setting new values to ensure that no other bits
are accidentally affected.

Ifi os::scientific isset, thefloating-point number iswritten with aleading - sign (for
negative numbers), a digit, adecimal point, more digits, an e (or Eif i os: : upper case is
set), a+ or - sign, and two or three digits representing the exponent. The digit before the
decimal is not zero unless the number is zero. Thetotal number of digits before and after the
decimal is equal to the specified format precision. If i 0s: : showpoi nt isnot set,
trimming of the decimal and digits following the decimal may occur.

Ifi os::fixed isset, thefloating-point number iswritten with a - sign (for negative
numbers), at least one digit, the decimal point, and as many digits following the decimal as
specified by the format precision. If i 0s: : showpoi nt isnot set, trimming of the decimal
and digits following the decimal may occur.

Input/Output Classes 681

los::fmtflags

See Also:

If neither i os: :scientificnorios::fixedisspecified, the floating-point number is
formatted using scientific notation provided one or both of the following conditions are met:

* the exponent is less than -4, or,
« the exponent is greater than the format precision.
Otherwise, fixed-point notation is used.

i 0s::unitbuf controlswhether or not the stream is flushed after each item iswritten. If
the bit is set, every item that is written to the stream is followed by a flush operation, which
ensures that the 1/0 stream buffer associated with the stream is kept empty, immediately
transferring the datato its final destination.

i 0s:: stdi o controlswhether or not the stream is synchronized after each item is written.
If the bit is set, every item that is written to the stream causes the stream to be synchronized,
which means any input or output buffers are flushed so that an 1/0O operation performed using
C (not C++) 1/O behavesin an understandable way. If the output buffer was not flushed,
writing using C++ and then C 1/O functions could cause the output from the C functions to
appear before the output from the C++ functions, since the characters might be sitting in the
C++ output buffer. Similarly, after the C output operations are done, acall should be made
tothe Clibrary f f | ush function on the appropriate stream before resuming C++ output
operations.

i os::flags,setf,unsetf, manipulator dec, manipulator hex, manipulator oct ,
manipulator r eset i osf | ags, manipulator set base, manipulator set i osf |l ags

682 Input/Output Classes

10s::good()

Synopsis: #i ncl ude <i ostream h>
public:
int ios::good() const;
Semantics: The good public member function queries the state of the i os object.

Results: The good public member function returns a non-zero valueif noneof i 0s: :i ostateis
clear, otherwise zero is returned.

See Also: i 0os::bad,clear,eof ,fail,iostate,rdstate,setstate

Input/Output Classes 683

l0s::init()

Synopsis: #i ncl ude <i ostream h>
pr ot ect ed:
void ios::init(streanbuf *sb);

Semantics: Thei ni t public protected member function is used by derived classesto explicitly initialize
thei os portion of the derived object, and to associate a st r eanbuf withthei os object.
Thei ni t public protected member function performs the following steps:
1. Thedefault fill character is set to a space.
2. Theformat precisionis set to six.
3. Thest reanbuf pointer (returned by the r dbuf member function) is set to sb.
4. Theremaining fields of the i os object areinitialized to zero.

Results: If sbhisNULL thei os: : badbi t issetintheerror statein theinherited i os object.

See Also: i os, rdbuf

684 Input/Output Classes

10s::10S()

Synopsis: #i ncl ude <i ostream h>
pr ot ect ed:
ios::ios();

Semantics: Thisform of the protected i 0os constructor creates adefault i os object that isinitialized,
but does not have an associated st r eanbuf . Initialization of an i 0s object is handled by
thei ni t protected member function.

Results: This protected i 0s constructor createsan i 0os object and setsi os: : badbi t intheerror
state in the inherited i 0s object.

See Also; ~ios,init

Input/Output Classes 685

10s::105()

Synopsis: #i ncl ude <i ostream h>
public:
ios::ios(streanbuf *sb);

Semantics: Thisform of the public i 0os constructor createsan i os object that isinitialized and has an
associated st r eanbuf . Initialization of an i os object ishandled by the i ni t protected
member function. Oncethei ni t protected member function is completed, the i os object’s
st reanmbuf pointerissettosh. If sbisnot NULL, i os: : badbi t iscleared from the
error statein theinherited i 0s object.

Results: Thispublici os constructor createsan i 0s object and, if sbis NULL, setsi os: : badbi t
in the error state in the inherited i os object.

See Also; ~ios,init

686 Input/Output Classes

10S::~10S()

Synopsis: #i ncl ude <i ostream h>
public:
virtual ios::~ios();
Semantics: The public virtual ~i 0os destructor destroysan i 0os object. The cal to the public virtual
~i 0s destructor isinserted implicitly by the compiler at the point wherethe i 0s object goes
out of scope.
Results: Thei os object is destroyed.

See Also: i oS

Input/Output Classes 687

i0S::loState

Synopsis:

Semantics:

See Also:

#i ncl ude <i ostream h>

public:

enumio_state {

goodbit = 0x00, // no errors

badbit = 0x01, // operation failed, nay not proceed
failbit = 0x02, // operation failed, nay proceed
eof bit = Ox04 // end of file encountered

1

typedef int iostate;

Thetypei os: :i 0_st at e isaset of bits representing the current state of the stream. The
i 0S::i ostat e member typedef represents the same set of bits, but usesan i nt to
represent the values, thereby avoiding problems made possible by the compiler’s ahility to
use smaller types for enumerations. All uses of these bits should usethe i 0s: : i ostate
member typedef.

The bit values defined by the i os: : i ost at e member typedef can be read and set by the
member functions r dst at e and cl ear , and can be used to control exception handling
with the member function except i ons.

i 0s:: badbi t representsthe state where the stream is no longer usable because of some
error condition.

i os::fail bit representsthe state where the previous operation on the stream failed, but
the stream is still usable. Subsequent operations on the stream are possible, but the state
must be cleared using the ¢l ear member function.

i 0s: : eof bi t represents the state where the end-of-file condition has been encountered.
The stream may still be used, but the state must be cleared using the ¢l ear member
function.

Eventhoughi os: : goodbi t isnot abit value (because its value is zero, which has no bits
on), it is provided for completeness.

i 0s:: bad,cl ear,eof ,fail,good,operator !,operator void *,rdstate,
setstate

688 Input/Output Classes

i0s::iword()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <i ostream h>
public:
long & os::iword(int index);

Thei wor d public member function creates areferencetoa | ong i nt, which may be used
to store and retrieve any suitable integer value. The index parameter specifieswhich | ong

i nt isto be referenced and must be obtained from a call to the xal | oc static member
function.

Note that the i wor d and pwor d public member functions return references to the same
storage with a different type. Therefore, each index obtained from the xal | oc static
member function can be used only for an integer or a pointer, not both.

Sincethe i wor d public member function returns areference and the i os class cannot
predict how many such items will be required by a program, it should be assumed that each
call tothe xal | oc static member function invalidates all previous references returned by
thei wor d public member function. Therefore, the i wor d public member function should
be called each time the reference is needed.

Thei wor d public member function returns areferencetoa | ong i nt.

i os::pword, xal | oc

Input/Output Classes 689

l0S::0penmode

Synopsis:

Semantics:

#i ncl ude <i ostream h>

public:

enum open_node {

in = 0x0001, // open for input

out = 0x0002, // open for output

atend = 0x0004, // seek to end after opening

append = 0x0008, // open for output, append to the end
truncate 0x0010, // discard contents after opening
nocr eat e 0x0020, // open only an existing file
norepl ace = 0x0040, // open only a new file

text = 0x0080, // open as text file

bi nary = 0x0100, // open as binary file

app append, // synonym
ate atend, // synonym
trunc = truncate // synonym
1

typedef int opennode;

Thetypei os: : open_node isaset of bits representing ways of opening astream. The

i 0s:: opennmode member typedef represents the same set of bits, but usesan i nt to
represent the values, thereby avoiding problems made possible by the compiler’s ahility to
use smaller types for enumerations. All uses of these bits should usethe i 0s: : opennobde
member typedef.

The bit values defined by i os: : opennode member typedef can be specified in the
constructors for stream objects, aswell asin various member functions.

i 0s::inisspecified in astream for which input operations may be performed.

i 0s::out isspecified in astream for which output operations may be performed. A
stream for which only i 0s: : i nisspecified isreferred to asan input stream. A stream for
whichonly i 0s: : out isspecified isreferred to as an output stream. A stream where both
ios::inandios::out arespecifiedisreferred to as an input/output stream.

i 0s::atendandi os: : at e are equivalent, and either one is specified for streams that
are to be positioned to the end before the first operation takes place. i os: at e is provided
for historical purposes and compatibility with other implementations of 1/0 streams. Note
that this bit positions the stream to the end exactly once, when the stream is opened.

i 0s::appendandi os: : app areequivalent, and either oneis specified for streams that
are to be positioned to the end before any and all output operations take place. i os: : app
is provided for historical purposes and compatibility with other implementations of 1/0
streams. Note that this bit causes the stream to be positioned to the end before each output
operation, while i os: : at end causes the stream to be positioned to the end only when first
opened.

690 Input/Output Classes

l0S::0penmode

ios::truncateandios::trunc areequivalent, and either oneis specified for streams
that are to be truncated to zero length before the first operation takes place. i 0s: :trunc is
provided for historical purposes and compatibility with other implementations of 1/0

streams.

i 0s:: nocr eat e isspecified if the file must exist beforeit is opened. If the file does not
exist, an error occurs.

i 0s:: norepl ace isspecified if the file must not exist beforeit isopened. That is, thefile
must be anew file. If thefile exists, an error occurs.

i 0s::text isspecifiedif thefileisto betreated asatext file. A textfileisdivided into
records, and each record is terminated by a new-line character, usually representedas "\ n’ .
The new-line character is translated into aform that is compatible with the underlying file
system’s concept of text files. This conversion happens automatically whenever the new-line
iswritten to the file, and the inverse conversion (to the new-line character) happens
automatically whenever the end of arecord isread from the file system.

i 0s:: bi nary isspecifiedif thefileisto betreated asabinary file. Binary filesare
streams of characters. No character has a special meaning. No grouping of charactersinto
records is apparent to the program, although the underlying file system may cause such a
grouping to occur.

The following default behaviors are defined:

Ifi os:: out isspecifiedand noneof i 0s::in,ios::appendorios::atendare
specified, i 0s: : truncat e isassumed.

Ifi os:: append isspecified, i 0s: : out isassumed.
Ifi os::truncat e isspecified, i 0s: : out isassumed.

If neither i 0s: : text nori os: : bi nary isspecified, i 0s: : t ext isassumed.

Input/Output Classes 691

l0s::operator ()

Synopsis: #i ncl ude <i ostream h>
public:
int ios::operator !() const;

Semantics: Theoperator ! public member function tests the error statein the inherited i os object
of thei os object.

Results: Theoperat or ! public member function returns anon-zero value if either of
ios::failbit orios::badbit bitsaresetintheerror statein the inherited i os
object, otherwise zero is returned.

SeeAlso: io0s::bad,clear,fail,good,iostate,operator void *, rdstate,
setstate

692 Input/Output Classes

i0s::operator void *()

Synopsis: #i ncl ude <i ostream h>
public:
i 0s::operator void *() const;

Semantics: Theoper at or voi d * public member function convertsthe i 0s object into a pointer to
voi d. The actual pointer value returned is meaningless and intended only for comparison
with NULL to determine the error state in the inherited i os object of the i os object.

Results: Theoperat or voi d * public member function returnsa NULL pointer if either of
ios::failbit orios::badbit bitsaresetintheerror statein theinherited i os
object, otherwise anon- NULL pointer is returned.

SeeAlso: io0s::bad,clear,fail,good,iostate,operator !,rdstate,setstate

Input/Output Classes 693

l0S::precision()

Synopsis: #i ncl ude <i ostream h>
public:
int ios::precision() const;
int ios::precision(int prec);

Semantics: Thepr eci si on public member function is used to query and/or set the format precision.
The format precision is used to control the number of digits of precision used when
formatting floating-point numbers. For scientific notation, the format precision describes the
total number of digits before and after the decimal point, but not including the exponent. For
fixed-point notation, the format precision describes the number of digits after the decimal
point.

Thefirst form of the pr eci si on public member function looks up the current format
precision.

The second form of the pr eci si on public member function sets the format precision to
prec.

By default, the format precisionissix. If precis specified to be less than zero, the format
precision is set to six. Otherwise, the specified format precision isused. For scientific
notation, aformat precision of zero istreated as a precision of one.

Results: The pr eci si on public member function returns the previous format precision setting.

SeeAlso: ios::fntflags, manipulator set prec

694 Input/Output Classes

l0s::pword()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <i ostream h>
public:
void * & os::pword(int index);

The pwor d public member function creates areference to a voi d pointer, which may be
used to store and retrieve any suitable pointer value. The index parameter specifies which
voi d pointer isto be referenced and must be obtained from a call to the xal | oc static
member function.

Note that the i wor d and pwor d public member functions return references to the same
storage with a different type. Therefore, each index obtained from the xal | oc static
member function can be used only for an integer or a pointer, not both.

Since the pwor d public member function returns areference and the i os class cannot
predict how many such items will be required by a program, it should be assumed that each
call tothe xal | oc static member function invalidates all previous references returned by
the pwor d public member function. Therefore, the pwor d public member function should
be called each time the reference is needed.

The pwor d public member function returns areferenceto a voi d pointer.

ios::iword, xall oc

Input/Output Classes 695

10s::rdbuf()

Synopsis: #i ncl ude <i ostream h>
public:
st reambuf *ios::rdbuf() const;

Semantics: Ther dbuf public member function looks up the pointer to the st r eanbuf object which
maintains the buffer associated with the i 0s object.

Results: Ther dbuf public member function returns the pointer to the st r eanmbuf object associated
withthei os object. If thereisno associated st r eanbuf object, NULL is returned.

696 Input/Output Classes

l0S::rdstate()

Synopsis: #i ncl ude <i ostream h>
public:
iostate ios::rdstate() const;

Semantics: Ther dst at e public member function is used to query the current value of
i 0s::iostateinthei os object without modifying it.

Results: Ther dst at e public member function returnsthe current value of i os: : i ost at e.

SeeAlso: io0s::bad,clear,eof ,fail,good,i ostate,operator !,operator void *,
setstate

Input/Output Classes 697

i0s::seekdir

Synopsis: #i ncl ude <i ostream h>
public:
enum seek_dir {
beg, // seek from begi nning
cur, // seek fromcurrent position
end // seek fromend
1
typedef int seekdir;

Semantics: Thetypei os: : seek_di r isaset of bitsrepresenting different methods of seeking within
astream. Thei os: : seekdi r member typedef represents the same set of bits, but uses an
i nt to represent the values, thereby avoiding problems made possible by the compiler's
ability to use smaller types for enumerations. All uses of these bits should use the
i 0s::seekdi r member typedef.

The bit values defined by i os: : seekdi r member typedef are used by the member
functions seekg and seekp, aswell the seekof f and seekpos member functionsin
classes derived from the st r eanbuf class.

i 0S: : beg causesthe seek offset to be interpreted as an offset from the beginning of the
stream. The offset is specified as a positive vaue.

i 0S:: cur causesthe seek offset to be interpreted as an offset from the current position of
the stream. If the offset is a negative value, the seek istowards the start of the stream.
Otherwise, the seek is towards the end of the stream.

i 0s: : end causes the seek offset to be interpreted as an offset from the end of the stream.
The offset is specified as a negative value.

698 Input/Output Classes

l0s::setf()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>

public:

ios::fmflags ios::setf(ios::fntflags onbits);
ios::fmflags ios::setf(ios::fntflags sethits,
ios::fmflags mask);

Theset f public member functionisusedto set bitsin i os: : fntfl ags inthei os
object.

Thefirst formis used to turn on the bits that are on in the onbits parameter. (onbitsis or’ed
intoi os: :fntflags).

The second form is used to turn off the bits specified in the mask parameter and turn on the
bits specified in the setbits parameter. Thisform is particularly useful for setting the bits
described by thei os: : basefiel d,ios::adjustfieldandios::floatfield
values, where only one bit should be on at atime.

Both forms of the set f public member function return the previous i os: : fmt f | ags
value.

ios::fmflags,setf,unsetf, manipulator dec, manipulator hex, manipulator oct ,
manipulator set base, manipulator set i osf | ags, manipulator r eset i osf | ags

Input/Output Classes 699

l0S::setstate()

Synopsis: #i ncl ude <i ostream h>
pr ot ect ed:
void ios::setstate(int or_bits);

Semantics: Theset st at e protected member function is provided as a convenience for classes derived
fromthei os class. It turnson the error statein the inherited i 0s object bitsthat are set in
the or_bits parameter, and leaves the other error state in the inherited i os object bits
unchanged.

Results: The set st at e protected member function sets the bits specified by or_bitsin the error
state in the inherited i 0s object.

SeeAlso: io0s::bad,clear,eof,fail,good,iostate,operator !,operator void *,
rdstate

700 Input/Output Classes

10s::sync_with_stdio()

Synopsis: #i ncl ude <i ostream h>
public:
static void ios::sync_wth_stdio();

Semantics: Thesync _wi t h_st di o public static member function is obsolete. It is provided for
compatibility.

Results: Thesync_wi t h_st di o public static member function has no return value.

Input/Output Classes 701

l0s::tie()

Synopsis: #i ncl ude <i ostream h>
public:
ostream *ios::tie() const;
ostream *ios::tie(ostream*ostrm);

Semantics: Thet i e public member function is used to query and/or set up a connection between the
i 0S object and another stream. The connection causes the output stream specified by ostrm
to be flushed whenever the i 0os object is about to read characters from a device or is about
to write characters to an output buffer or device.
Thefirst form of the t i e public member function is used to query the current tie.
The second form of the t i e public member function is used to set the tied stream to ostrm.
Normally, the predefined streams ci n and cer r set uptiesto cout so that any input from
the terminal flushes any buffered output, and any writesto cer r flush cout beforethe
characters are written. cout doesnot set up atieto cerr because cer r hastheflag
i 0s::unitbuf set, soit flushesitself after every write operation.

Results: Both forms of the t i e public member function return the previous tie value.

SeeAlso: ios::fntflags

702 Input/Output Classes

10S::unsetf()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>
public:
ios::fmflags ios::unsetf(ios::fmflags offbits);

Theunset f public member function is used to turn off bitsin i os: : f mt f | ags that are
set in the offbits parameter. All other bitsin i os: : f nt f | ags are unchanged.

Theunset f public member function returnstheold i os: : f nt f | ags value.

ios::fmtflags,setf,unsetf, manipulator dec, manipulator hex, manipulator oct ,
manipulator set base, manipulator set i osf | ags, manipulator r eset i osf | ags

Input/Output Classes 703

l0s::width()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>
public:

int ios::wdth() const;
int ios::width(int wid);

Thewi dt h public member function is used to query and/or set the format width used to
format the next item. A format width of zero indicates that the item isto be written using
exactly the number of positions required. Other values indicate that the item must occupy at
least that many positions. If the formatted item islarger than the specified format width, the
format width isignored and the item is formatted using the required number of positions.

Thefirst form of the wi dt h public member function is used to query the format width that is
to be used for the next item.

The second form of the wi dt h public member function is used to set the format width to wid
for the next item to be formatted.

After an item has been formatted, the format width isreset to zero. Therefore, any non-zero
format width must be set before each item that is to be formatted.

Thew dt h public member function returns the previous format width.

i os::fmtflags, manipulator set w, manipulator set wi dt h

704 Input/Output Classes

los::xalloc()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>
public:
static int ios::xalloc();

The xal | oc public static member function returns an index into an array of items that the
program may use for any purpose. Each item can be either a | ong i nt or apointer to
voi d. Theindex can be used with the i wor d and pwor d member functions.

Because the xal | oc public static member function manipulates st at i ¢ member data, its
behavior is not tied to any one object but affects the entire class of objects. The valuethat is
returned by the xal | oc public static member function is valid for all objects of all classes
derived from the i os class. No subsequent call to the xal | oc public static member
function will return the same value as a previous call.

Thexal | oc public static member function returns an index for use with the i wor d and
pwor d member functions.

i os::iword, pword

Input/Output Classes 705

iostream

Declared:

i ostream h

Derived from:

Derived by:

See Also;

i streamostream

fstreamstrstream

Thei ost r eamclass supports reading and writing of characters from and to the standard
input/output devices, usually the keyboard and screen. The i ost r eamclass provides
formatted conversion of charactersto and from other types (e.g. integers and floating-point
numbers). The associated st r eanbuf class provides the methods for communicating with
the actual device, whilethe i ost r eamclass provides the interpretation of the characters.
Generally, ani ost r eamobject won't be created by a program, since there is no mechanism
at thislevel to "open™ adevice. Noinstance of an i ost r eamobject is created by default,
sinceit is usually not possible to perform both input and output on the standard input/output
devices. Thei ost r eamclassis provided as a base class for other derived classes that can
provide both input and output capabilities through the same object. The f st r eamand

st r st r eamclasses are examples of classes derived fromthe i ost r eamclass.
Protected Member Functions

The following protected member functions are declared:

i ostrean();

Public Member Functions

The following public member functions are declared:

iostream(ios const &);

i ostream(streanbuf *);

virtual ~iostream();

Public Member Operators

The following public member operators are declared:

i ostream & operator =(streanbuf *);
i ostream & operator =(ios const &);

i 0s,i stream ostream

706 Input/Output Classes

lostream::iostream()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <i ostream h>
pr ot ect ed:
iostream:iostream));

Thisform of the protected i ost r eamconstructor createsan i ost r eamobject without an
attached st r eanbuf object.

Thisform of the protected i ost r eamconstructor is only used implicitly by the compiler
when it generates a constructor for a derived class.

The protected i ost r eamconstructor produces an initialized i ost r eamaobject.
i 0s:: badbit issetintheerror statein theinherited i os object.

~i ostream

Input/Output Classes 707

lostream::iostream()

Synopsis: #i ncl ude <i ostream h>
public:
iostream:iostream ios const &strm);

Semantics. Thisform of the public i ost r eamconstructor createsan i ost r eamobject associated with
the st r eanmbuf object currently associated with the strm parameter. The i ostr eam
object isinitialized and will use the strm st r eanbuf object for subsequent operations.
strmwill continueto usethe st r eanbuf object.

Results: Thepublici ost r eamconstructor produces an initialized i ost r eamobject. If thereisno
st r eambuf object currently associated with the strm parameter, i os: : badbi t issetin
the error statein the inherited i os object.

See Also; ~i ostream

708 Input/Output Classes

lostream::iostream()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>
public:
i ostream:iostream streanmbuf *sb);

Thisform of the public i ost r eamconstructor createsan i ost r eamobject with an
attached st r eanbuf object.

Since a user program usually will not create an i ost r eamobject, thisform of the public

i ost r eamconstructor is unlikely to be explicitly used, except in the member initializer list
for the constructor of a derived class. The sb parameter isapointer toa st r eanbuf object,
which should be connected to the source and sink of characters for the stream.

Thepublici ost r eamconstructor produces an initialized i ost r eamobject. If thesb
parameter isNULL, i os: : badbi t issetintheerror statein the inherited i os object.

~i ostream

Input/Output Classes 709

lostream::~iostream()

Synopsis: #i ncl ude <i ostream h>
public:
virtual iostream: ~iostrean();

Semantics: The public ~i ost r eamdestructor does not do anything explicit. The i os destructor is
called for that portion of the i ost r eamobject. The call to the public ~i ostream
destructor isinserted implicitly by the compiler at the point where the i ost r eamobject
goes out of scope.

Results: Thei ost r eamobject is destroyed.

See Also; i ostream

710 Input/Output Classes

lostream::operator =()

Synopsis:

Semantics:

Results:

#i ncl ude <i ostream h>
public:
i ostream & ostream : operator =(streanbuf *sb);

Thisform of the oper at or = public member function initializesthe target i ost r eam
object and sets up an association between the i ost r eamobject and the st r eanmbuf object
specified by the sb parameter.

The oper at or = public member function returns areference to the i ost r eamobject that

isthe target of the assignment. |If the sb parameter is NULL, i os: : badbi t issetinthe
error statein theinherited i 0os object.

Input/Output Classes 711

lostream::operator =()

Synopsis: #i ncl ude <i ostream h>
public:
i ostream & ostream :operator =(const ios &trm);

Semantics: Thisform of the oper at or = public member function initializesthe i ost r eamobject
and sets up an association between the i ost r eamobject and the st r eanmbuf object
currently associated with the strm parameter.

Results: Theoper at or = public member function returns areferenceto the i ost r eamobject that

isthe target of the assignment. |If thereisno st r eambuf object currently associated with
the strm parameter, i 0s: : badbi t issetin the error state in the inherited i 0s object.

712 Input/Output Classes

istream

Declared: iostreamh

Derived from:
i 0s

Derived by: i ostreamifstreamistrstream

Thei st r eamclass supports reading characters from a class derived from st r eanbuf ,
and provides formatted conversion of characters into other types (such as integers and
floating-point numbers). The st r eanbuf class provides the methods for communicating
with the external device (keyboard, disk), whilethe i st r eamclass provides the
interpretation of the resulting characters.

Generally, ani st r eamabject won't be explicitly created by a program, since thereis no
mechanism at thislevel to open adevice. The only default i st r eamobject in aprogram is
ci n, which reads from standard input (usually the keyboard).

Thei st r eamclass supports two basic concepts of input: formatted and unformatted. The
overloaded oper at or >> member functions are called extractors and they provide the
support for formatted input. The rest of the member functions deal with unformatted input,
managing the state of the i 0s object and providing afriendlier interface to the associated
st r eambuf object.

Protected Member Functions
The following protected member functions are declared:

i stream();
eatwhite();

Public Member Functions
The following public member functions are declared:

i stream(istreamconst &);
i stream streanbuf *);
virtual ~istream);

int ipfx(int =0);

voi d isfx();

int get();

i stream &get (char *, int, char =’'\n");

i stream &get (signed char *, int, char =’'\n");

i stream &get (unsigned char *, int, char = '\n");

i stream &get (char &);
i stream &get (signed char &);

Input/Output Classes 713

istream

See Also:

stream &get (unsi gned char &);

stream &get (streanbuf & char ='\n");
stream &getline(char *, int, char ='\n");
stream &getline(signed char *, int, char ='\n");
stream &getline(unsigned char *, int, char ='\n’
stream & gnore(int =1, int = ECF);
stream & ead(char *, int);

stream & ead(signed char *, int);
stream & ead(unsigned char *, int);

st ream &seekg(streanpos);

st ream &seekg(streanoff, ios::seekdir);

st ream &put back(char);
streanpos tellg();

i nt gcount() const;

nt peek();

nt sync();

Public Member Operators
The following public member operators are declared:

st ream &operator =(streanbuf *);

st ream &operator =(istreamconst &);
stream &operator >>(char *);

stream &operator >>(signed char *);

stream &operator >>(unsigned char *);

st ream &operator >>(char &);

stream &operat or >>(signed char &);

st ream &operator >>(unsigned char &);

st ream &operator >>(signed short &);

st ream &operator >>(unsigned short &);

st ream &operator >>(signed int &);

st ream &operator >>(unsigned int &);

st ream &operator >>(signed long &);

st ream &operator >>(unsigned long &);
stream &operator >>(float &);

st ream &operator >>(double &);

stream &operator >>(long double &);

stream &operator >>(streanbuf &);

stream &operator >>(istream & *)(istream&));
stream &operator >>(ios & *)(ios &));

0S, i ostreamostream

714 Input/Output Classes

)

Istream::eatwhite()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>
pr ot ect ed:
void istream:eatwhite();

The eat whi t e protected member function extracts and discards whitespace characters from
thei st r eamobject, until a non-whitespace character isfound. The non-whitespace
character is not extracted.

The eat whi t e protected member function sets i 0s: : eof bi t inthe error state in the
inherited i os object if end-of-fileis encountered as the first character while extracting
whitespace characters.

istream:ignore,ios::fnflags

Input/Output Classes 715

Istream::gcount()

Synopsis: #i ncl ude <i ostream h>
public:
int istream:gcount() const;

Semantics: Thegcount public member function determines the number of characters extracted by the
last unformatted input member function.

Results: The gcount public member function returns the number of characters extracted by the last
unformatted input member function.

SeeAlso: istream:get,getline, read

716 Input/Output Classes

Istream::get()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>
public:
int istream:get();

Thisform of the get public member function performs an unformatted read of asingle
character from the i st r eamobject.

Thisform of the get public member function returns the character read fromthe i st r eam
object. If thei st r eamobject is positioned at end-of-file before the read, EOF is returned
andi os: : eof bit bitissetintheerror statein theinherited i os object.

i os::failbit bitisnot set by thisform of the get public member function.

i stream : put back

Input/Output Classes 717

Istream::get()

Synopsis: #i ncl ude <i ostream h>
public:
i stream & stream :get(char &ch);
i stream & stream :get(signed char &ch);
i stream & stream : get(unsigned char &ch);

Semantics. Theseforms of the get public member function perform an unformatted read of asingle
character from the i st r eamobject and store the character in the ch parameter.

Results: These forms of the get public member function return areference to the i st r eamabject.
i 0s:: eof bit issetintheerror state in theinherited i os object if thei st r eamobjectis
positioned at end-of-file before the attempt to read the character. i o0s::fail bit issetin
the error statein the inherited i os object if no character isread.

SeeAlso: i stream:read, operator >>

718 Input/Output Classes

Istream::get()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>

public:

i stream & stream :get(char *buf, int len,

char delim="\n");

i stream & stream :get(signed char *buf, int |en,
char delim="\n");

i stream & stream : get(unsigned char *buf, int |en,
char delim="\n");

These forms of the get public member function perform an unformatted read of at most len
-1 charactersfromthe i st r eamobject and store them starting at the memory location
specified by the buf parameter. |If the character specified by the delim parameter is
encountered inthe i st r eamobject before len -1 characters have been read, the read
terminates without extracting the delimiting character.

After the read terminates, whether or not an error occurred, anull character is stored in buf
following the last character read from the i st r eamabject.

If the delim parameter is not specified, the new-line character is assumed.

These forms of the get public member function return areferenceto the i st r eamobject.
If end-of-file is encountered as the first character, i 0s: : eof bi t issetintheerror statein
theinherited i 0s object. If no charactersare stored into buf, i os: : fail bit issetinthe
error statein theinherited i os object.

i stream : getline, read,operator >>

Input/Output Classes 719

Istream::get()

Synopsis: #i ncl ude <i ostream h>
public:
i stream & stream: get(streanbuf &shb, char delim="\n");

Semantics: Thisform of the get public member function performs an unformatted read of characters
fromthei st r eamabject and transfers them to the st r eanbuf object specified in the sb
parameter. The transfer stops if end-of-file is encountered, the delimiting character specified
in the delim parameter isfound, or if the store into the sb parameter fails. If the delim
character isfound, it is not extracted from the i st r eamabject and is not transferred to the
sb object.

If the delim parameter is not specified, the new-line character is assumed.
Results: Theget public member function returns areference to the i st r eamobject.
i os::failbit issetintheerror state intheinherited i os object if the storeinto the

st r eanmbuf object fails.

SeeAlso: istream:getline,read,operator >>

720 Input/Output Classes

istream::getline()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>

public:

i stream & stream :getline(char *buf, int |en,

char delim="\n");

i stream & stream :getline(signed char *buf, int |en,
char delim="\n");

i stream & stream :getline(unsigned char *buf, int len,
char delim="\n");

Theget | i ne public member function performs an unformatted read of at most len -1
charactersfromthe i st r eamobject and stores them starting at the memory location
specified by the buf parameter. |If the delimiting character, specified by the delim parameter,
isencountered inthe i st r eamobject before len -1 characters have been read, the read
terminates after extracting the delim character.

If len -1 characters have been read and the next character is the delim character, it is not
extracted.

After the read terminates, whether or not an error occurred, anull character is stored in the
buffer following the last character read fromthe i st r eamobject.

If the delim parameter is not specified, the new-line character is assumed.

Theget | i ne public member function returns areferencetothe i st r eamobject. If
end-of-file is encountered as the first character, i os: : eof bi t issetintheerror state in the
inherited i os object. If end-of-fileis encountered before len characters are transferred or
the delim character isreached, i os: : fai | bi t issetintheerror state in theinherited i 0os
object.

i stream : get,read, operator >>

Input/Output Classes 721

Istream::ignore()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>
public:
istream & stream:ignore(int num= 1, int delim= EOF);

Thei gnor e public member function extracts and discards up to num characters from the

i st reamobject. If the num parameter is not specified, the i gnor e public member
function extracts and discards one character. If the delim parameter isnot EOF and it is
encountered before num characters have been extracted, the extraction ceases after discarding
the delimiting character. The extraction stops if end-of-file is encountered.

If the num parameter is specified as a hegative number, no limit isimposed on the number of
characters extracted and discarded. The operation continues until the delimiting character is
found and discarded, or until end-of-file. ThisbehaviorisaWATCOM extension.

Thei gnor e public member function returns areference to the i st r eamobject. If
end-of-file is encountered as the first character, i 0s: : eof bi t issetintheerror statein the
inherited i os object.

istream :eatwhite

722 Input/Output Classes

istream::ipfx()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>
public:
int istream:ipfx(int noskipws =0);

Thei pf x public member function is a prefix function executed before each of the formatted
and unformatted read operations. If any bitsaresetin i os: : i ost at e, the i pf x public
member function immediately returns O, indicating that the prefix function failed. Failurein
the prefix function causes the input operation to fail.

If the noskipws parameter is 0 or unspecified and the i 0s: : ski pws bitisonin

i os::fmtflags,whitespace characters are discarded and the i st r eamabject is
positioned so that the next character read is the first character after the discarded whitespace.
Otherwise, no whitespace skipping takes place.

The formatted input functions that read specific types of objects (such as integers and
floating-point numbers) call the i pf x public member function with the noskipws parameter
set to zero, allowing leading whitespaces to be discarded if the i 0s: : ski pws bitisonin
i os::fntflags. Theunformatted input functions that read characters without
interpretation call the i pf x public member function with a the noskipws parameter set to 1
so that no whitespace characters are discarded.

If thei st r eamobject istied to an output stream, the output stream is flushed.
If thei st r eamobject isnot in an error state in the inherited i os object when the above
processing is completed, the i pf x public member function returns a non-zero value to

indicate success. Otherwise, zero isreturned to indicate failure.

i stream :isfx

Input/Output Classes 723

Istream::isfx()

Synopsis: #i ncl ude <i ostream h>
public:
void istream:isfx();

Semantics: Thei sf x public member function is a suffix function executed just before the end of each
of the formatted and unformatted read operations.

As currently implemented, the i sf x public member function does not do anything.

SeeAlso: istream:ipfx

724 Input/Output Classes

Istream::istream()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <i ostream h>
pr ot ect ed:
istream:istrean();

Thisform of the protected i st r eamconstructor createsan i st r eamaobject without an
associated st r eanbuf object.

Thisform of the protected i st r eamconstructor is only used implicitly by the compiler
when it generates a constructor for a derived class.

Thisform of the protected i st r eamconstructor creates an initialized i st r eamaobject.
i 0s:: badbit issetintheerror statein theinherited i os object.

~i stream

Input/Output Classes 725

Istream::istream()

Synopsis: #i ncl ude <i ostream h>
public:
istream:istrean{ istreamconst & strm);

Semantics: Thisform of the public i st r eamconstructor createsan i st r eamobject associated with
the st r eanmbuf object currently associated with the istrm parameter. The i st r eamobject
isinitialized and will use theistrm st r eanbuf object for subsequent operations. istrmwill
continue to use the st r eanbuf object.

Results: Thisform of the public i st r eamconstructor createsan initialized i st r eamobject. If
thereisno st r eanbuf object currently associated with the istrm parameter,
i 0s:: badbit issetintheerror statein theinherited i os object.

See Also; ~i stream

726 Input/Output Classes

Istream::istream()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <i ostream h>
public:
i stream :istrean{ streanbuf *sb);

Thisform of the public i st r eamconstructor createsan i st r eamobject with an associated
st r eambuf object specified by the sb parameter.

Thisfunction islikely to be used for the creation of an i st r eamobject that is associated
with the same st r eanbuf object asanother i st r eamobject.

Thisform of the public i st r eamconstructor creates an initialized i st r eamaobject. If the
sb parameter isNULL, i 0s: : badbi t issetintheerror statein the inherited i os object.

~i stream

Input/Output Classes 727

Istream::~istream()

Synopsis: #i ncl ude <i ostream h>
public:
virtual istream:~istrean();

Semantics: The public virtual ~i st r eamdestructor does not do anything explicit. The i os destructor
iscalled for that portion of the i st r eamobject. The call to the public virtual ~i st r eam
destructor is inserted implicitly by the compiler at the point where the i st r eamobject goes
out of scope.

Results: Thei st r eamobject is destroyed.

See Also; i stream

728 Input/Output Classes

istream::operator =()

Synopsis:

Semantics:

Results:

#i ncl ude <i ostream h>
public:
i stream & stream :operator =(streanmbuf *sb);

Thisform of the oper at or = public member function is used to associate a st r eanbuf
object, specified by the sb parameter, with an existing i st r eamobject. Thei st r eam
object isinitialized and will use the specified st r eanbuf object for subsequent operations.

Thisform of the oper at or = public member function returns areferenceto the i st r eam

object that is the target of the assignment. If the sb parameteris NULL, i 0s: : badbi t is
set in the error state in the inherited i 0s object.

Input/Output Classes 729

istream::operator =()

Synopsis: #i ncl ude <i ostream h>
public:
i stream & stream :operator =(istreamconst & strm);

Semantics: Thisform of the oper at or = public member function is used to associate the i st r eam
object with the st r eambuf object currently associated with the istrm parameter. The
i st reamobject isinitialized and will usetheistrm's st r eanbuf object for subsequent
operations. Theistrm object will continue to use the st r eambuf object.

Results: Thisform of the oper at or = public member function returns areferenceto the i st r eam
object that is the target of the assignment. If thereisno st r eanbuf object currently
associated with the istrm parameter, i 0s: : badbi t isset inthe error statein the inherited
i 0S object.

730 Input/Output Classes

istream::operator >>()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>

public:

i stream & stream : operator >>(char *buf);

i stream & stream : operator >>(signed char *buf);

i stream & stream : operator >>(unsigned char *buf);

These forms of the oper at or >> public member function perform a formatted read of
charactersfrom the i st r eamabject and place them in the buffer specified by the buf
parameter. Characters are read until a whitespace character isfound or the maximum size
has been read. If awhitespace character isfound, it is not transferred to the buffer and
remainsinthei st r eamobject.

If anon-zero format width has been specified, it isinterpreted as the maximum number of
characters that may be placed in buf. No more than format width-1 characters are read from
thei st r eamobject and transferred to buf. If format width is zero, characters are
transferred until a whitespace character isfound.

Since these forms of the oper at or >> public member function use format width, it is reset
to zero after each use. It must be set before each input operation that requires a non-zero
format width.

A null character is added following the last transferred character, even if the transfer fails
because of an error.

These forms of the oper at or >> public member function return a reference to the

i st r eamobject so that further extraction operations may be specified in the same
statement. If no characters aretransferred to buf, i os: : fai | bit issetintheerror statein
theinherited i os object. If thefirst character read yielded end-of-file, i os: : eof bi t is
set in the error state in the inherited i 0os object.

i stream :get,getline,read

Input/Output Classes 731

istream::operator >>()

Synopsis: #i ncl ude <i ostream h>
public:
i stream & stream :operator >>(char &ch);
i stream & stream : operator >>(signed char &ch);
i stream & stream : operator >>(unsigned char &ch);

Semantics. Theseforms of the oper at or >> public member function perform aformatted read of a
single character fromthe i st r eamobject and place it in the ch parameter.

Results: These forms of the oper at or >> public member function return areference to the
i st r eamobject so that further extraction operations may be specified in the same
statement. |If the character read yielded end-of-file, i os: : eof bi t issetinthe error state
intheinherited i os object.

SeeAlso: istream: get

732 Input/Output Classes

istream::operator >>()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>

public:

i stream & stream : operator >>(signed int &um);

i stream & stream :operator >>(unsigned int &um);

i stream & stream : operator >>(signed |ong &um);

i stream & stream : operator >>(unsigned [ong &um);

i stream & stream : operator >>(signed short &num);

i stream & stream : operator >>(unsigned short &um);

These formsthe oper at or >> public member function perform aformatted read of an
integral value fromthe i st r eamobject and place it in the num parameter.

The number may be preceded by a + or - sign.

Ifi os::decistheonly bitsetinthei os: : basefi el d bitsof i os:: fm fl ags, the
number isinterpreted as a decimal (base 10) integer, composed of the digits 0123456789.

Ifi os::oct istheonly bitsetinthei os: : basefi el d bitsof i os: : fnt f 1 ags, the
number isinterpreted as an octal (base 8) integer, composed of the digits 01234567.

Ifi os:: hex istheonly bitsetinthei os: : basefi el d bitsof i os: : fmt f1 ags, the
number isinterpreted as a hexadecimal (base 16) integer, composed of the digits
0123456789 and the letters abcdef or ABCDEF.

If nobitsaresetinthei os: : basefi el d bitsof i os: : f nt f | ags, the operator looks
for a prefix to determine the base of the number. If the first two charactersare 0x or 0X, the
number isinterpreted as a hexadecimal number. If the first character isa O (and the second
isnot an x or X), the number isinterpreted as an octal integer. Otherwise, no prefix is
expected and the number is interpreted as a decimal integer.

If morethan onebitissetinthei os: : basefi el d bitsof i os: : fmt f | ags, the number
isinterpreted as a decimal integer.

These forms of the oper at or >> public member function return areference to the

i st r eamobject so that further extraction operations may be specified in the same
statement. If end-of-fileis encountered as thefirst character, i os: : eof bi t issetinthe
error statein the inherited i os object. If an overflow occurs while converting to the
required integer type, the i os: : fai | bi t issetintheerror statein the inherited i os
object.

ios::fmflags

Input/Output Classes 733

istream::operator >>()

Synopsis:

Semantics:

Results:

#i ncl ude <i ostream h>

public:

i stream & stream :operator >>(float &um);

i stream & stream : operator >>(double &um);

i stream & stream : operator >>(|ong double &um);

These forms of the oper at or >> public member function perform aformatted read of a
floating-point value fromthe i st r eamobject and place it in the num parameter.

The floating-point value may be specified in any form that is acceptable to the C++ compiler.

These forms of the oper at or >> public member function return a reference to the

i st r eamobject so that further extraction operations may be specified in the same
statement. If end-of-fileis encountered as the first character, i os: : eof bi t issetinthe
error statein theinherited i 0s object. If an overflow occurs while converting to the
required type, thei os: : fai |l bit issetintheerror statein theinherited i os object.

734 Input/Output Classes

istream::operator >>()

Synopsis: #i ncl ude <i ostream h>
public:
i stream & stream : operator >>(streanbuf &sb);

Semantics: Thisform of the oper at or >> public member function transfers all the characters from
thei st r eamobject into the sb parameter. Reading continues until end-of-fileis
encountered.

Results: Thisform of the oper at or >> public member function return areference to the
i st r eamobject so that further extraction operations may be specified in the same
Statement.

Input/Output Classes 735

istream::operator >>()

Synopsis: #i ncl ude <i ostream h>
public:
i stream & stream :operator >>(istream & *fn)(istreamé&));
i stream & stream :operator >>(ios & *fn)(ios &));

Semantics. Theseforms of the oper at or >> public member function are used to implement the
non-parameterized manipulatorsfor the i st r eamclass. The function specified by the fn
parameter is called with the i st r eamobject asits parameter.

Results: These forms of the oper at or >> public member function return a reference to the

i st r eamobject so that further extraction operations may be specified in the same
Statement.

736 Input/Output Classes

Istream::peek()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>
public:
int istream: peek();

The peek public member function looks up the next character to be extracted from the
i st r eamobject, without extracting the character.

The peek public member function returns the next character to be extracted from the
i st reamobject. If thei st reamaobject is positioned at end-of-file, ECF is returned.

i stream : get

Input/Output Classes 737

Istream::putback()

Synopsis: #i ncl ude <i ostream h>
public:
i stream & stream : put back(char ch);

Semantics: The put back public member function attempts to put the extracted character specified by
the ch parameter back into the i st r eamobject. The ch character must be the same as the
character before the current position of the i st r eamobject, usually the last character
extracted from the stream. If it is not the same character, the result of the next character
extraction is undefined.

The number of characters that can be put back is defined by the i st r eamobject, but is
usualy at least 4. Depending on the status of the buffers used for input, it may be possible to
put back more than 4 characters.

Results: The put back public member function returns areferenceto the i st r eamobject. If the
put back public member function is unable to put back the ch parameter, i os: : fai |l bi t
isset in the error state in the inherited i os object.

SeeAlso: istream: get

738 Input/Output Classes

istream::read()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>

public:

i stream & stream :read(char *buf, int len);

i stream & stream :read(signed char *buf, int len);

i stream & stream :read(unsigned char *buf, int len);

Ther ead public member function performs an unformatted read of at most len characters
fromthei st r eamobject and stores them in the memory locations starting at buf. If
end-of-file is encountered before len characters have been transferred, the transfer stops and
i os::failbit issetintheerror statein theinherited i os object.

The number of characters extracted can be determined with the gcount member function.
Ther ead public member function returns areferenceto the i st r eamobject. If end-of-file
is encountered as the first character, i 0s: : eof bi t issetintheerror state in the inherited

i 0s object. If end-of-fileis encountered before len characters are transferred,

i os::failbit issetintheerror stateintheinherited i os object.

i stream : gcount, get,getline

Input/Output Classes 739

Istream::seekg()

Synopsis: #i ncl ude <i ostream h>
public:
i stream & stream : seekg(streanpos pos);

Semantics: The seekg public member function positionsthe i st r eamobject to the position specified
by the pos parameter so that the next input operation commences from that position.

Results: The seekg public member function returns areferenceto the i st r eamobject. If the seek
operation fails, i os: : fai |l bi t issetintheerror statein theinherited i os object.

SeeAlso: istream:tellg,ostream:tellp,ostream: seekp

740 Input/Output Classes

Istream::seekg()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>
public:
i stream & stream : seekg(streanmoff offset, ios::seekdir dir);

The seekg public member function positionsthe i st r eamobject to the specified position
so that the next input operation commences from that position.

Thedir parameter may bei 0s: : beg,i os::cur,orios:: end andisinterpretedin
conjunction with the offset parameter as follows:

i 0s::beg theoffset isrelativeto the start and should be a positive value.

i 0s::cur theoffsetisrelativeto the current position and may be positive
(seek towards end) or negative (seek towards start).

i 0s::end theoffsetisrelativeto the end and should be a negative value.

If the dir parameter has any other value, or the offset parameter does not have an appropriate
sign, the seekg public member function fails.

The seekg public member function returns areference to the i st r eamobject. If the seek
operation fails, i 0s: : fail bit issetintheerror stateintheinherited i os object.

ostream :tell p,ostream: seekp
istream:tellg

Input/Output Classes 741

Istream::sync()

Synopsis: #i ncl ude <i ostream h>
public:
int istream:sync();

Semantics: The sync public member function synchronizes the input buffer and the i st r eamobject
with whatever source of charactersisbeing used. The sync public member function uses
thest r eambuf class's sync virtual member function to carry out the synchronization.
The specific behavior is dependent on what type of st r eanbuf derived object is associated
withthei st r eamobject.

Results: The sync public member function returns __NOT _EOF on success, otherwise EOF is
returned.

742 Input/Output Classes

istream::tellg()

Synopsis: #i ncl ude <i ostream h>
public:
streanpos istream:tellg();

Semantics: Thet el | g public member function determines the position in the i st r eamabject of the
next character available for reading. Thefirst character inan i st r eamobject is at offset
zero.

Results: Thet el | g public member function returns the position of the next character available for
reading.

SeeAlso: ostream:tell p,ostream: seekp
i stream : seekg

Input/Output Classes 743

istrstream

Declared: strstrea.h

Derived from:
strstreanbase,i stream

Thei strstreamclassis used to create and read from string stream objects.

Thei str st reamclass provideslittle of its own functionality. Derived from the
strstreanbase and i st r eamclasses, its constructors and destructor provide simplified

access to the appropriate equivalents in those base classes.

Of the available I/O stream classes, creating an i st r st r eamaobject is the preferred method

of performing read operations from a string stream.

Public Member Functions

The following member functions are declared in the public interface:

istrstream char *);

i strstream(signed char *);

i strstream unsigned char *);
istrstream(char *, int);
istrstrean(signed char *, int);

i strstream(unsigned char *, int);
~i strstream();

See Also: i streamostrstreamstrstreamstrstreanbase

744 Input/Output Classes

Istrstream::istrstream)

Synopsis: #i ncl ude <strstrea. h>
public:
istrstream:istrstrean(char *str);
istrstream:istrstrean(signed char *str);
istrstream:istrstream unsigned char *str);

Semantics. Thisform of the public i st r st r eamconstructor createsan i st r st r eamobject
consisting of the null terminated C string specified by the str parameter. The inherited
i st r eammember functions can be used to read fromthe i st r st r eamobject.

Results: Thisform of the public i st r st r eamconstructor creates an initialized i st r st r eam
object.

See Also: ~i strstream

Input/Output Classes 745

Istrstream::istrstream|()

Synopsis:

Semantics:

Results:

See Also:

#i nclude <strstrea. h>

public:

istrstream:istrstream char *str, int len);
istrstream:istrstream signed char *str, int len);
istrstream:istrstream unsigned char *str, int len);

Thisform of the public i st r st r eamconstructor createsan i st r st r eamobject
consisting of the characters starting at str and ending at str + len - 1. Theinherited
i st r eammember functions can be used to read fromthe i st r st r eamobject.

Thisform of the public i st r st r eamconstructor creates an initialized i st r st r eam
object.

~i strstream

746 Input/Output Classes

Istrstream::~istrstream()

Synopsis: #i ncl ude <strstrea. h>
public:
istrstream: ~istrstream);
Semantics: Thepublic ~i st r st r eamdestructor does not do anything explicit. The cal to the public
~i st r st reamdestructor isinserted implicitly by the compiler at the point where the
i strstreamobject goesout of scope.
Results: Thei str st reamobject isdestroyed.

See Also: i strstream

Input/Output Classes 747

Manipulators

Declared:

iostream h and i omanip. h

Manipulators are designed to be inserted into or extracted from a stream. Manipulators come
in two forms, non-parameterized and parameterized. The non-parameterized manipulators
aresimpler and are declared in <i ost r eam h>. The parameterized manipulators require
more complexity and are declared in <i omani p. h>.

<i omani p. h> defines two macros SMANI P_def i ne and SMANI P_rrake to implement
parameterized manipulators. The workings of the SMANI P_def i ne and SMANI P_nake
macros are disclosed in the header file and are not discussed here.

Non-parameterized Manipulators

The following non-parameterized manipulators are declared in <i ost ream h>:

ios &dec(ios &);
ios &ex(ios &);
ios &oct(ios &);

i stream &ws(

istream &);

ostream &endl (ostream &);
ostream &ends(ostream &);
ostream &f | ush(ostream &);

Parameterized Manipulators

The following parameterized manipulators are declared in <i ormani p. h>:

SVANI P_def i
SMANI P_def i
SMANI P_def i
SMANI P_def i
SMANI P_def i
SMANI P_def i
SMANI P_def i

ne(
ne(
ne(
ne(
ne(
ne(
ne(

748 Input/Output Classes

| ong)

i nt
i nt

| ong)

i nt
i nt
i nt

)
)

)
)
)

resetiosfl ags(
setbase(int);
setfill(int);
setiosflags(long);
setprecision(int);
setw(int);
setwidth(int);

l'ong);

manipulator dec()

Synopsis: #i ncl ude <i ostream h>
i os &Jec(ios &strm);

Semantics: Thedec manipulator setsthei os: : basefi el d bitsfor decimal formatting in
ios::fmtflagsinthestrmi os object.

SeeAlso: ios::fntflags

Input/Output Classes 749

manipulator endl()

Synopsis: #i ncl ude <i ostream h>
ostream &endl (ostream &ostrm);

Semantics: Theendl manipulator writes a new-line character to the stream specified by the ostrm
parameter and performs a flush.

See Also: ostream : fl ush

750 Input/Output Classes

manipulator ends()

Synopsis: #i ncl ude <i ostream h>
ostream &ends(ostream &ostrm);

Semantics: The ends manipulator writes anull character to the stream specified by the ostrm parameter.

Input/Output Classes 751

manipulator flush()

Synopsis: #i ncl ude <i ostream h>
ostream &f | ush(ostream &ostrm);

Semantics: Thef | ush manipulator flushes the stream specified by the ostrm parameter. Theflushis
performed in the same manner asthe f | ush member function.

See Also: ostream : fl ush

752 Input/Output Classes

manipulator hex()

Synopsis: #i ncl ude <i ostream h>
i os &hex(ios &strm);

Semantics: The hex manipulator setsthe i os: : basef i el d bitsfor hexadecimal formatting in
ios::fmtflagsinthestrmi os object.

SeeAlso: ios::fntflags

Input/Output Classes 753

manipulator oct()

Synopsis: #i ncl ude <i ostream h>
ios &oct(ios &trm);

Semantics: Theoct manipulator setsthei os: : basefi el d bitsfor octal formatting in
ios::fmtflagsinthestrmi os object.

SeeAlso: ios::fntflags

754 Input/Output Classes

manipulator resetiosflags()

Synopsis. #i ncl ude <i omani p. h>
SMANI P_define(long) resetiosflags(long flags)

Semantics: Ther eseti osfl ags manipulator turns off the bitsin i os: : f nt f | ags that correspond
to the bits that are on in the flags parameter. No other bits are affected.

SeeAlso: ios::flags,ios::fntflags,ios::setf,ios::unsetf

Input/Output Classes 755

manipulator setbase()

Synopsis. #i ncl ude <i omani p. h>
SVMANI P_define(int) setbase(int base);

Semantics: Theset base manipulator setsthe i 0s: : basefi el d bitsini os: : fmt fl ags tothe
value specified by the base parameter within the stream that the set base manipulator is

operating upon.

SeeAlso: ios::fntflags

756 Input/Output Classes

manipulator setfill()

Synopsis. #i ncl ude <i omani p. h>
SMANI P_define(int) setfill(int fill)

Semantics: Theset fil |l manipulator setsthefill character to the value specified by the fill parameter
within the stream that the set f i | | manipulator is operating upon.

See Also: ios::fill

Input/Output Classes 757

manipulator setiosflags()

Synopsis. #i ncl ude <i omani p. h>
SMANI P_define(long) setiosflags(long flags);

Semantics: Theseti osfl ags manipulator turnsonthebitsin i os: : f m f | ags that correspond to
the bits that are on in the flags parameter. No other bits are affected.

SeeAlso: ios::flags,ios::fntflags,ios::setf,ios::unsetf

758 Input/Output Classes

manipulator setprecision()

Synopsis. #i ncl ude <i omani p. h>
SMANI P_define(int) setprecision(int prec);

Semantics: Theset preci si on manipulator sets the format precision to the value specified by the
prec parameter within the stream that the set pr eci si on manipulator is operating upon.

SeeAlso: i 0s::precision

Input/Output Classes 759

manipulator setw()

Synopsis. #i ncl ude <i omani p. h>
SMANI P_define(int) setw int wid);

Semantics: The set wmanipulator sets the format width to the value specified by the wid parameter
within the stream that the set wmanipulator is operating upon.

See Also: i 0s::w dth, manipulator set wi dt h

760 Input/Output Classes

manipulator setwidth()

Synopsis. #i ncl ude <i omani p. h>
SVANI P_define(int) setwidth(int wid);

Semantics: Theset wi dt h manipulator sets the format width to the value specified by the wid
parameter within the stream that the set wi dt h manipulator is operating upon.

Thisfunction isaWATCOM extension.

SeeAlso: i 0s::w dth, manipulator set w

Input/Output Classes 761

manipulator ws()

Synopsis: #i ncl ude <i ostream h>
i stream &ws(istream & strm);

Semantics: Thews manipulator extracts and discards whitespace characters from the istrm parameter,
leaving the stream positioned at the next non-whitespace character.

Thews manipulator is needed particularly whenthe i os: : ski pws bitisnot setin

i os::fmtflagsintheistrmobject. In thiscase, whitespace characters must be explicitly
removed from the stream, since the formatted input operations will not automatically remove
them.

SeeAlso: istream:eatwhite,istream:ignore

762 Input/Output Classes

ofstream

Declared:

fstreamh

Derived from:

See Also;

f st reanbase, ost ream

The of st r eamclassis used to create new files or access existing files for writing. Thefile
can be opened and closed, and write and seek operations can be performed.

The of st r eamclass provides very little of its own functionality. Derived from both the
f st reanbase and ost r eamclasses, its constructors, destructor and member function
provide simplified access to the appropriate equivalents in those base classes.

Of the available I/O stream classes, creating an of st r eamobject is the preferred method of
accessing afile for output operations.

Public Member Functions

The following public member functions are declared:

of stream();
of strean(char const *,
i 0s::opennmpde = ios::out,

int = filebuf::openprot);
of strean(fil edesc);
of strean(fil edesc, char *, int);

~of stream();
voi d open(char const *,
i 0s::opennmpbde = io0s::out,

int = filebuf::openprot);

fstreamfstreanbase,ifstreamostream

Input/Output Classes 763

ofstream::ofstream()

Synopsis. #i ncl ude <fstream h>
public:
of stream : of strean();

Semantics: Thisform of the public of st r eamconstructor createsan of st r eamobject that is not
connected to afile. The open or at t ach member functions should be used to connect the
of st r eamobject to afile.

Results: The public of st r eamconstructor produces an of st r eamaobject that is not connected to a
file

See Also; ~of st ream

764 Input/Output Classes

ofstream::ofstream()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <fstream h>

public:
of stream : of strean{ const char *nane,
i 0s::opennode node = ios::out,

int prot = filebuf::openprot);

Thisform of the public of st r eamconstructor createsan of st r eamobject that is
connected to the file specified by the name parameter, using the specified mode and prot
parameters. The connection is made viathe C library open function.

The public of st r eamconstructor produces an of st r eamabject that is connected to the
file specified by name. If the open fails,i os: : fail bit andi os:: badbit aresetin
the error statein the inherited i 0os object.

~of st r eam open, f streanbase: : cl ose, opennode, openpr ot

Input/Output Classes 765

ofstream::ofstream()

Synopsis. #i ncl ude <fstream h>
public:
of stream : of strean{ filedesc hdl);

Semantics: Thisform of the public of st r eamconstructor creates an of st r eamobject that is attached
to the file specified by the hdl parameter.

Results: The public of st r eamconstructor produces an of st r eamobject that is attached to hdl. If
the attach fails, i os: : fail bit andi os: : badbit aresetintheerror statein the
inherited i os object.

See Also; ~of stream f st reanbase: : attach, f streanbase: : fd

766 Input/Output Classes

ofstream::ofstream()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <fstream h>
public:
of stream : of strean{ filedesc hdl, char *buf, int len);

Thisform of the public of st r eamconstructor createsan of st r eamobject that is
connected to the file specified by the hdl parameter. The buffer specified by the buf and len
parameters is offered to the associated f i | ebuf object viathe set buf member function.
If the buf parameter is NULL or the lenisless than or equal to zero, the f i | ebuf is
unbuffered, so that each read or write operation reads or writes a single character at atime.

The public of st r eamconstructor produces an of st r eamobject that is attached to hdl. If
the connection to hdl fails, i os: : fai |l bit andi os: : badbi t aresetintheerror statein
theinherited i 0s object. If the set buf fails, i os:: fail bit issetintheerror statein
theinherited i os object.

~of stream f st reanbase: : att ach, f streanbase: : f d,
f st reanbase: : set buf

Input/Output Classes 767

ofstream::~ofstream()

Synopsis. #i ncl ude <fstream h>
public:
of stream : ~of stream();
Semantics: The public ~of st r eamdestructor does not do anything explicit. The call to the public
~of st r eamdestructor isinserted implicitly by the compiler at the point where the
of st r eamabject goes out of scope.
Results: The public ~of st r eamdestructor destroysthe of st r eamobject.

See Also: of stream

768 Input/Output Classes

ofstream::open()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <fstream h>

public:
voi d of stream : open(const char *nane,
i 0s::opennode node = ios::out,

int prot = filebuf::openprot);

The open public member function connects the of st r eamobject to the file specified by
the name parameter, using the specified mode and prot parameters. The node parameter is
optional and usually is not specified unless additional bits(such as i os: : bi nary or

i 0S: :text)aretobe specified. The connection is made viathe C library open function.
If the openfails, i os: : fail bit issetintheerror statein theinherited i 0s object.

of st ream opennode, openprot, f streanbase: : att ach,
f st reanbase: : cl ose, f streanbase: : fd, f streanbase: : i s_open

Input/Output Classes 769

ostream

Declared:

i ostream h

Derived from:

i 0s

Derived by: i ostream of stream ostrstream

The ost r eamclass supports writing charactersto a class derived from the st r eanbuf
class, and provides formatted conversion of types (such as integers and floating-point
numbers) into characters. The class derived from the st r eanbuf class provides the
methods for communicating with the external device (screen, disk), whilethe ost r eam
class provides the conversion of the typesinto characters.

Generally, ost r eamobjects won't be explicitly created by a program, since thereis no
mechanism at thislevel to open adevice. The only default ost r eamobjectsin a program
arecout , cerr,and cl og which write to the standard output and error devices (usually the
screen).

The ost r eamclass supports two basic concepts of output: formatted and unformatted. The
overloaded oper at or << member functions are called inserters and they provide the
support for formatted output. The rest of the member functions deal with unformatted
output, managing the state of the i 0s object and providing afriendlier interface to the
associated st r eanbuf object.

Protected Member Functions

The following protected member functions are declared:
ostream);

Public Member Functions

The following public member functions are declared:

ostreanm(ostream const &);
ostream(streanbuf *);
virtual ~ostream();

ostream &f | ush();

int opfx();

voi d osfx();

ostream &put (char);

ostream &put (signed char);
ost ream &put (unsi gned char);
ost ream &seekp(streanpos);
ostream &seekp(streanoff, ios::seekdir);

770 Input/Output Classes

ostream

See Also:

streanpos tellp();

ostream &wite(char const *,
ostream &wite(signed char const *,

int);

ostream &wite(unsigned char const *,

Public Member Operators

The following public member operators are declared:

ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or
ostream &oper at or

=(streanbuf

*)'

=(ostreamconst &);

<<(
<<(
<<(
<<(
<<(
<<(
<<(
<<(
<<(
<<(
<<(
<<(
<<(
<<(
<<(
<<(
<<(
<<(
<<(

i 0S,i ostreami stream

char);

si gned char);
unsi gned char);
si gned short);
unsi gned short);
signed int);
unsi gned int);
signed long);
unsi gned |l ong);
float);

doubl e);

| ong double);
void *);
streanbuf &);
char const *);
si gned char const

unsi gned char const

ostream &(*)(ost
ios & *)(ios &)

int);

int);

*);
*);
reamé&));

)

Input/Output Classes 771

ostream::flush()

Synopsis: #i ncl ude <i ostream h>
public:
ostream &ostream : flush();

Semantics: Thef | ush public member function causesthe ost r eamobject’ s buffersto be flushed,
forcing the contents to be written to the actual device connected to the ost r eamaobject.

Results: Thef | ush public member function returns areference to the ost r eamobject. On failure,
i os::failbit issetintheerror stateintheinherited i os object.

See Also: ostream : osf x

772 Input/Output Classes

ostream::operator <<()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>

public:

ostream &ostream : operator <<(char ch);

ostream &ostream : operator <<(signed char ch);
ostream &ostream : operator <<(unsigned char ch);

These forms of the oper at or << public member function write the ch character into the
ost r eamobject.

These forms of the oper at or << public member function return areference to the
ost r eamobject so that further insertion operations may be specified in the same statement.
i os::failbit issetintheerror stateintheinherited i os object if an error occurs.

ostream : put

Input/Output Classes 773

ostream::operator <<()

Synopsis: #i ncl ude <i ostream h>
public:
ostream &ostream : operator <<(char const *str);
ostream &ostream : operator <<(signed char const *str);
ostream &ostream : operator <<(unsigned char const *str);

Semantics. These forms of the oper at or << public member function perform a formatted write of the
contents of the C string specified by the str parameter to the ost r eamabject. The
characters from str are transferred up to, but not including the terminating null character.

Results: These forms of the oper at or << public member function return areference to the

ost r eamobject so that further insertion operations may be specified in the same statement.
i os::failbit issetintheerror stateintheinherited i os object if an error occurs.

774 Input/Output Classes

ostream::operator <<()

Synopsis:

Semantics:

#i ncl ude <i ostream h>

public:

ostream &ostream : operator <<(signed int num);
ostream &ostream : operator <<(unsigned int num);
ostream &ostream : operator <<(signed |ong num);
ostream &ostream : operator <<(unsigned |ong num);
ostream &ostream : operator <<(signed short num);
ostream &ostream : operator <<(unsigned short num);

These forms of the oper at or << public member function perform a formatted write of the
integral value specified by the num parameter to the ost r eamobject. Theinteger valueis
converted to astring of characters which are written to the ost r eamobject. numis
converted to a base representation depending on the setting of the i os: : basefi el d bits
inios::fntflags. Ifthei os: : oct hitisthe only bit on, the conversion isto an octal
(base 8) representation. If the i os: : hex bit isthe only bit on, the conversionisto a
hexadecimal (base 16) representation. Otherwise, the conversion isto a decimal (base 10)
representation.

For decimal conversions only, asign may be written in front of the number. If the number is
negative, a- minussign iswritten. If the number is positive and the i os: : showpos bhitis
onini os::fmflags,a+ plussigniswritten. No signiswritten for avalue of zero.

If thei os: : showbase bitisonini os:: fntfl ags, and the conversionisto octal or
hexadecimal, the base indicator iswritten next. The base indicator for a conversion to octal
isazero. The baseindicator for a conversion to hexadecimal is 0x or 0X, depending on the
setting of the i os: : upper case bitini os:: fntfl ags.

If the value being written is zero, the conversion isto octal, and the i 0s: : showbase hitis
on, nothing further iswritten since asingle zero is sufficient.

The value of numisthen converted to characters. For conversions to decimal, the magnitude
of the number is converted to a string of decimal digits 0123456789. For conversionsto
octal, the number is treated as an unsigned quantity and converted to a string of octal digits
01234567. For conversions to hexadecimal, the number is treated as an unsigned quantity
and converted to a string of hexadecimal digits 0123456789 and the letters abcdef or
ABCDEF, depending on the setting of the i 0s: : uppercaseinios::fntflags. The
string resulting from the conversion is then written to the ost r eamabject.

If thei os: :internal bitissetini os:: fntfl ags and paddingisrequired, the

padding characters are written after the sign and/or base indicator (if present) and before the
digits.

Input/Output Classes 775

ostream::operator <<()

Results: These forms of the oper at or << public member function return areference to the

ost r eamobject so that further insertion operations may be specified in the same statement.
ios::failbit issetintheerror stateintheinherited i os object if an error occurs.

776 Input/Output Classes

ostream::operator <<()

Synopsis:

Semantics:

Results:

#i ncl ude <i ostream h>

public:

ostream &ostream : operator <<(float num);
ostream &ostream : operator <<(double num);
ostream &ostream : operator <<(|ong double num);

These forms of the oper at or << public member function perform aformatted write of the
floating-point value specified by the num parameter to the ost r eamobject. The number is
converted to either scientific (exponential) form or fixed-point form, depending on the
setting of thei os: : fl oatfiel dbitsinios::fntflags. Ifios::scientificis
the only bit set, the conversionisto scientific form. If i os: : fi xed isthe only bit set, the
conversion is to fixed-point form. Otherwise (neither or both bits set), the value of the
number determines the conversion used. If the exponent islessthan -4 or is greater than or
equal to the format precision, the scientific form isused. Otherwise, the fixed-point formis
used.

Scientific form consists of a minus sign (for negative numbers), one digit, adecimal point,
format precision-1 digits, an e or E (depending on the setting of the i os: : upper case
bit), a minus sign (for negative exponents) or aplus sign (for zero or positive exponents), and
two or three digits for the exponent. The digit before the decimal is not zero, unless the
number is zero. If the format precision is zero (or one), no digits are written following the
decimal point.

Fixed-point form consists of aminus sign (for negative numbers), one or more digits, a
decimal point, and format precision digits.

If thei os: : showpoi nt bitisnotsetini os:: fntfl ags, trailing zeroes are trimmed
after the decimal point (and before the exponent for scientific form), and if no digits remain
after the decimal point, the decimal point is discarded as well.

Ifthei os: :internal bitissetini os:: fntfl ags and paddingisrequired, the
padding characters are written after the sign (if present) and before the digits.

These forms of the oper at or << public member function return a reference to the

ost r eamobject so that further insertion operations may be specified in the same statement.
i os::failbit issetintheerror stateintheinherited i os object if an error occurs.

Input/Output Classes 777

ostream::operator <<()

Synopsis: #i ncl ude <i ostream h>
public:
ostream &ostream : operator <<(void *ptr);

Semantics: Thisform of the oper at or << public member function performs a formatted write of the
pointer value specified by the ptr parameter to the ost r eamobject. The ptr parameter is
converted to an implementation-defined string of characters and written to the ost r eam
object. With the Watcom C++ implementation, the string startswith 0x or 0X (depending
on the setting of the i 0s: : upper case bit), followed by 4 hexadecimal digits for 16-bit
pointers and 8 hexadecimal digits for 32-bit pointers. Leading zeroes are added to ensure the
correct number of digits are written. For far pointers, 4 additional hexadecimal digitsand a
colon are inserted immediately after the Ox prefix.

Results: Thisform of the oper at or << public member function returns a reference to the
ost r eamobject so that further insertion operations may be specified in the same statement.
ios::failbit issetintheerror stateintheinherited i os object if an error occurs during
the write.

778 Input/Output Classes

ostream::operator <<()

Synopsis:

Semantics:

Results:

#i ncl ude <i ostream h>
public:
ostream &ostream : operator <<(streanbuf &sb);

Thisform of the oper at or << public member function transfers the contents of the sb
st reanmbuf object to the ost r eamabject. Reading from the st r eanbuf object stops
when the read fails. No padding with the fill character takes place on output to the

ost r eamobject.

Thisform of the oper at or << public member function returns areference to the

ost r eamobject so that further insertion operations may be specified in the same statement.
i os::failbit issetintheerror stateintheinherited i os object if an error occurs.

Input/Output Classes 779

ostream::operator <<()

Synopsis: #i ncl ude <i ostream h>
public:
ostream &ostream : operator <<(ostream & *fn)(ostream &));
ostream &ostream :operator <<(ios &*fn)(ios &));

Semantics. Theseforms of the oper at or << public member function are used to implement the
non-parameterized manipulators for the ost r eamclass. The function specified by the fn
parameter is called with the ost r eamobject asits parameter.

Results: These forms of the oper at or << public member function return a reference to the

ost r eamobject so that further insertions operations may be specified in the same
Statement.

780 Input/Output Classes

ostream::operator =()

Synopsis:

Semantics:

Results:

#i ncl ude <i ostream h>
public:
ostream &ostream : operator =(streanbuf *sb);

Thisform of the oper at or = public member function is used to associate a st r eanbuf
object, specified by the sb parameter, with an existing ost r eamobject. The ost r eam
object isinitialized and will use the specified st r eanbuf object for subsequent operations.

Thisform of the oper at or = public member function returns areference to the ost r eam

object that is the target of the assignment. If the sb parameteris NULL, i 0s: : badbi t is
set in the error state in the inherited i 0s object.

Input/Output Classes 781

ostream::operator =()

Synopsis: #i ncl ude <i ostream h>
public:
ostream &ostream :operator =(const ostream &ostrm);

Semantics: Thisform of the oper at or = public member function is used to associate the ost r eam
object with the st r eambuf object currently associated with the ostrm parameter. The
ost r eamobject isinitialized and will usethe ostrm’'s st r eanbuf object for subsequent
operations. The ostrm object will continueto usethe st r eanbuf object.

Results: Thisform of the oper at or = public member function returns areference to the ost r eam
object that is the target of the assignment. If thereisno st r eanbuf object currently
associated with the ostrm parameter, i 0s: : badbi t issetinthe error statein the inherited
i 0S object.

782 Input/Output Classes

ostream::opfx()

Synopsis: #i ncl ude <i ostream h>
public:
int ostream :opfx();

Semantics: If opf x public member function is a prefix function executed before each of the formatted
and unformatted output operations. If any bitsaresetin i os: : i ost at e, the opf x public
member function immediately returns zero, indicating that the prefix function failed. Failure
in the prefix function causes the output operation to fail.

If the ost r eamobject istied to another ost r eamobject, the other ost r eamobject is
flushed.

Results: The opf x public member function returns a non-zero value on success, otherwise zero is
returned.

See Also: ostream :osfx,flush,ios::tie

Input/Output Classes 783

ostream::osfx()

Synopsis: #i ncl ude <i ostream h>
public:
voi d ostream : osfx();

Semantics: The osf x public member function is a suffix function executed at the end of each of the
formatted and unformatted output operations.

If thei os: : uni t buf bitissetini os:: fntfl ags,thefl ush member functionis
caled. Ifthei os::stdiobitissetini os::fntflags,theClibrary f fl ush function
isinvoked onthe st dout and st derr file streams.

See Also; ostream : osf x, fl ush

784 Input/Output Classes

ostream::ostream|()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <i ostream h>
pr ot ect ed:
ostream : ostrean();

Thisform of the protected ost r eamconstructor creates an ost r eamaobject without an
attached st r eanbuf object.

Thisform of the protected ost r eamconstructor is only used implicitly by the compiler
when it generates a constructor for a derived class.

Thisform of the protected ost r eamconstructor creates an initialized ost r eamaobject.
i 0s:: badbit issetintheerror statein theinherited i os object.

~0Sst ream

Input/Output Classes 785

ostream::ostream()

Synopsis: #i ncl ude <i ostream h>
public:
ostream : ostrean(ostream const &ostrm);

Semantics: Thisform of the public ost r eamconstructor creates an ost r eamobject associated with
the st r eanmbuf object currently associated with the ostrm parameter. The ost r eam
object isinitialized and will use the ostrm’s st r earbuf object for subsequent operations.
The ostrm object will continue to use the st r eanbuf object.

Results: Thisform of the public ost r eamconstructor creates an initialized ost r eamobject. If
thereisno st r eanbuf object currently associated with the ostrm parameter,
i 0s:: badbit issetintheerror statein theinherited i os object.

See Also; ~0stream

786 Input/Output Classes

ostream::ostream|()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <i ostream h>
public:
ostream : ostrean(streanbuf *sb);

Thisform of the public ost r eamconstructor creates an ost r eamobject with an associated
st r eambuf object specified by the sb parameter.

Thisfunction islikely to be used for the creation of an ost r eamobject that is associated
with the same st r eanbuf object as another ost r eamaobject.

Thisform of the public ost r eamconstructor creates an initialized ost r eamaobject. If the
sb parameter isNULL, i 0s: : badbi t issetintheerror statein the inherited i os object.

~0Sst ream

Input/Output Classes 787

ostream::~ostream()

Synopsis: #i ncl ude <i ostream h>
public:
virtual ostream:~ostrean();

Semantics: The public virtual ~ost r eamdestructor does not do anything explicit. The i os destructor
iscalled for that portion of the ost r eamobject. The call to the public virtual ~ost r eam
destructor is inserted implicitly by the compiler at the point where the ost r eamobject goes
out of scope.

Results: The ost r eamobject is destroyed.

See Also; ostream

788 Input/Output Classes

ostream::put()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>

public:

ostream &ostream : put (char ch);

ostream &ostream : put (signed char ch);
ostream &ostream : put (unsigned char ch);

These forms of the put public member function write the ch character to the ost r eam
object.

These forms of the put public member function return areference to the ost r eamabject.
If an error occurs, i 0s: : fail bit issetintheerror statein theinherited i os object.

ostream :operator <<, wite

Input/Output Classes 789

ostream::seekp()

Synopsis: #i ncl ude <i ostream h>
public:
ost ream &ostream : seekp(streanpos pos);

Semantics. Thisfrom of the seekp public member function positionsthe ost r eamabject to the
position specified by the pos parameter so that the next output operation commences from
that position.

The pos value is an absolute position within the stream. 1t may be obtained viaacall to the
t el | p member function.

Results: Thisfrom of the seekp public member function returns areference to the ost r eamobject.
If the seek operation fails, i os: : fail bit issetintheerror stateintheinherited i os
object.

SeeAlso: ostream:tellp,istream:tellg,istream:seekg

790 Input/Output Classes

ostream::seekp()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <i ostream h>
public:
ostream &ostream : seekp(streanoff offset, ios::seekdir dir);

Thisfrom of the seekp public member function positionsthe ost r eamabject to the
specified position so that the next output operation commences from that position.

Thedir parameter may bei 0s: : beg,i os::cur,orios:: end andisinterpretedin
conjunction with the offset parameter as follows:

i 0s::beg theoffset isrelativeto the start and should be a positive value.

i 0s::cur theoffsetisrelativeto the current position and may be positive
(seek towards end) or negative (seek towards start).

i 0s::end theoffsetisrelativeto the end and should be a negative value.

If the dir parameter has any other value, or the offset parameter does not have an appropriate
sign, the seekp public member function fails.

Thisfrom of the seekp public member function returns areference to the ost r eamobject.
If the seek operation fails, i os: : fail bit issetintheerror stateintheinherited i os
object.

ostream:tellp,istream:tellg,istream:seekg

Input/Output Classes 791

ostream::tellp()

Synopsis: #i ncl ude <i ostream h>
public:
streanpos ostream:tellp();

Semantics: Thet el | p public member function returns the position in the ost r eamobject at which the
next character will be written. Thefirst character inan ost r eamabject is at offset zero.

Results: Thet el | p public member function returns the position in the ost r eamobject at which the
next character will be written.

SeeAlso: ostream:seekp,istream:tellg,istream: seekg

792 Input/Output Classes

ostream::write()

Synopsis:

Semantics:

Results:

#i ncl ude <i ostream h>

public:

ostream &stream :wite(char const *buf, int len);

ostream & stream :wite(signed char const *buf, int len);
ostream &ostream :wite(unsigned char const *buf, int len);

Thewr i t e public member function performs an unformatted write of the characters
specified by the buf and len parametersinto the ost r eamobject.

These member functions return areference to the ost r eamobject. If an error occurs,
i os::failbit issetintheerror stateintheinherited i os object.

Input/Output Classes 793

ostrstream

Declared: strstrea.h

Derived from:
strstreanbase, ostream

Theost r st r eamclassis used to create and write to string stream objects.

The ost r st r eamclass provideslittle of its own functionality. Derived from the
strstreanbase and ost r eamclasses, its constructors and destructor provide simplified
access to the appropriate equivaents in those base classes. The member functions provide
specialized access to the string stream object.

Of the available I/O stream classes, creating an ost r st r eamaobject is the preferred method
of performing write operations to a string stream.

Public Member Functions

The following member functions are declared in the public interface:

ostrstrean();

ostrstrean(char *, int, ios::opennode = ios::out);
ostrstrean(signed char *, int, ios::opennode = ios::out);
ostrstrean(unsigned char *, int, io0s::opennbde = io0s::out);

~ostrstream();
i nt pcount() const;
char *str();

See Also: i strstreamostreamostrstreamstrstreanbase

794 Input/Output Classes

ostrstream::ostrstream()

Synopsis: #i ncl ude <strstrea. h>
public:
ostrstream: ostrstream);

Semantics: Thisform of the public ost r st r eamconstructor creates an empty ost r st r eamobject.
Dynamic allocation isused. The inherited stream member functions can be used to access
theost r st r eamobject.

Results: Thisform of the public ost r st r eamconstructor creates an initialized, empty
ostr st reamobject.

See Also; ~ostrstream

Input/Output Classes 795

ostrstream::ostrstream()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <strstrea. h>

public:

ostrstream:ostrstream char *str,

int |en,

i 0s::opennmpbde node = ios::out);

ostrstream :ostrstrean(signed char *str,
int |en,

i 0s::opennmpde node = ios::out);
ostrstream:ostrstream unsigned char *str,
int len,

i 0s::opennpbde node = ios::out);

These forms of the public ost r st r eamconstructor create an initialized ost r st r eam
object. Dynamic alocation is not used. The buffer is specified by the str and len parameters.
If thei os: : append or i os: : at end bits are set in the mode parameter, the str parameter
is assumed to contain a C string terminated by a null character, and writing commences at the
null character. Otherwise, writing commences at str.

Thisform of the public ost r st r eamconstructor creates an initialized ost r st r eam
object.

~0strstream

796 Input/Output Classes

ostrstream::~ostrstream|()

Synopsis: #i ncl ude <strstrea. h>
public:
ostrstream: ~ostrstream));

Semantics: The public ~ost r st r eamdestructor does not do anything explicit. The cal to the public
~ost r st r eamdestructor isinserted implicitly by the compiler at the point where the
ost r st r eamobject goes out of scope.

Results: The ost r st r eamobject is destroyed.

See Also: ostrstream

Input/Output Classes 797

ostrstream::pcounty()

Synopsis: #i ncl ude <strstrea. h>
public:
int ostrstream :pcount() const;

Semantics: Thepcount public member function computes the number of characters that have been
written to the ost r st r eamobject. Thisvalueis particularly useful if the ost r st ream
object does not contain a C string (terminated by a null character), so that the number of
characters cannot be determined with the C library st r | en function. If the ost r st r eam
object was created by appending to a C string in a static buffer, the length of the original
string isincluded in the character count.

Results: The pcount public member function returns the number of characters contained in the
ost r st r eamobject.

798 Input/Output Classes

ostrstream::str()

Synopsis:

Semantics:

Results:

#i nclude <strstrea. h>
public:
char *ostrstream:str();

The st r public member function creates a pointer to the buffer being used by the
ost r st r eamobject. If the ost r st r eamobject was created without dynamic allocation
(static mode), the pointer is the same as the buffer pointer passed in the constructor.

For ost r st r eamobjects using dynamic alocation, the st r public member function makes
animplicit call tothe st r st r eanbuf : : f r eeze member function. If nothing has been
written to the ost r st r eamobject, the returned pointer will be NULL.

Note that the buffer does not necessarily end with anull character. If the pointer returned by
the st r public member function isto be interpreted as a C string, it isthe program’s
responsibility to ensure that the null character is present.

The st r public member function returns a pointer to the buffer being used by the
ostrstreamobject.

Input/Output Classes 799

stdiobuf

Declared:

st di obuf. h

Derived from:

See Also:

st r eanbuf

The st di obuf class specializesthe st r eanbuf classand is used to implement the
standard input/output buffering required for the ci n, cout , cerr and cl og predefined
objects.

The st di obuf classbehavesinasimilar way tothe fi | ebuf class, but does not need to
switch between the get area and put area, sinceno st di obuf object can be created for
both reading and writing. When the get area is empty and aread is done, the under f | ow
virtual member function reads more characters and fills the get area again. When the put
areaisfull and awriteisdone, the over f | owvirtual member function writes the characters
and makes the put area empty again.

C++ programmers who wish to use the standard input/output streams without deriving new
objects do not need to explicitly create or use a st di obuf object.

Public Member Functions
The following member functions are declared in the public interface:

st di obuf () ;

stdiobuf(FILE *);

~st di obuf () ;

virtual int overflow int = EOF);
virtual int underflow();

virtual int sync();

st reanbuf,i os

800 Input/Output Classes

stdiobuf::overflow()

Synopsis: #i ncl ude <stdi obuf. h>

public:
vi rtual

int stdiobuf::overflowm int ch = EOF);

Semantics: Theover f | ow public virtual member function provides the output communication to the
standard output and standard error devices to which the st di obuf object is connected.
Member functionsin the st r eanbuf classcall the over f | owpublic virtual member
function for the derived class when the put areaisfull.

Theover f | owpublic virtual member function performs the following steps:

1

If no buffer is present, abuffer isallocated with the st r eanbuf: : al | ocat e
member function, which may call the doal | ocat e virtual member function.
The put area isthen set up. If, after calling st r eanbuf : : al | ocat e, no
buffer is present, the st di obuf object isunbuffered and ch (if not EOF) is
written directly to the file without buffering, and no further action is taken.

If the get area is present, it is flushed with acall to the sync virtual member
function. Note that the get area won't be present if a buffer was set up in step 1.

If chisnot EOF, it is added to the put area, if possible.

Any charactersin the put area are written to thefile.

The put area pointers are updated to reflect the new state of the put area. If the
write did not complete, the unwritten portion of the put area is still present. If the

put area was full before the write, ch (if not ECF) is placed at the start of the put
area. Otherwise, the put areais empty.

Results: The over f | owpublic virtual member function returns __NOT _ECF on success, otherwise
EOF isreturned.

SeeAlso: stdiobuf::underfl ow, streanbuf::overfl ow

Input/Output Classes 801

stdiobuf::stdiobuf()

Synopsis: #i ncl ude <stdi obuf. h>
public:
st di obuf: : stdiobuf();

Semantics: Thisform of the public st di obuf constructor createsa st di obuf object that is
initialized but not yet connected to afile.

Results: Thisform of the public st di obuf constructor createsa st di obuf object.

See Also: ~st di obuf

802 Input/Output Classes

stdiobuf::stdiobuf()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <stdi obuf. h>
public:
st di obuf: :stdiobuf(FILE *fptr);

Thisform of the public st di obuf constructor createsa st di obuf object that is
initialized and connected to a C library FILE stream. Usually, oneof st di n, st dout or
st der r isspecified for the fptr parameter.

Thisform of the public st di obuf constructor createsa st di obuf object that is
initialized and connected to a C library FILE stream.

~st di obuf

Input/Output Classes 803

stdiobuf::~stdiobuf()

Synopsis: #i ncl ude <stdi obuf. h>
public:
st di obuf: : ~stdi obuf ();

Semantics: The public ~st di obuf destructor does not do anything explicit. The st r eanbuf
destructor is called for that portion of the st di obuf object. The call to the public
~st di obuf destructor isinserted implicitly by the compiler at the point where the
st di obuf object goes out of scope.

Results: The st di obuf object is destroyed.

SeeAlso: st di obuf

804 Input/Output Classes

stdiobuf::sync()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <stdi obuf. h>
public:
virtual int stdiobuf::sync();

The sync public virtual member function synchronizesthe st di obuf object with the
associated device. If the put area contains characters, it is flushed. If the get area contains
buffered characters, the sync public virtual member function fails.

The sync public virtual member function returns __NOT _EOF on success, otherwise, EOF
isreturned.

st reambuf : : sync

Input/Output Classes 805

stdiobuf::underflow()

Synopsis: #i ncl ude <stdi obuf. h>
public:
virtual int stdiobuf::underflow);

Semantics: Theunder f | ow public virtual member function provides the input communication from
the standard input device to which the st di obuf object is connected. Member functionsin
thest r eambuf classcall the under f | ow public virtual member function for the derived
class when the get area is empty.

The under f | ow public virtual member function performs the following steps:

1. If noreserveareais present, abuffer is allocated with the
st reanbuf : : al | ocat e member function, which may call the doal | ocat e
virtual member function. If, after calling al | ocat e, noreserve areais present,
thest di obuf object is unbuffered and a one-character reserve area (plus
putback area) is set up to do unbuffered input. This buffer is embedded in the
st di obuf object. Theget areaisset up asempty.

2. Theunused part of the get area is used to read characters from the file connected
tothest di obuf object. The get area pointers are then set up to reflect the new
get area.

Results: Theunder f | owpublic virtual member function returns the first unread character of the get
area, on success, otherwise EOF isreturned. Note that the get pointer is not advanced on
success.

See Also: st di obuf: :overfl ow, streamnbuf::underfl ow

806 Input/Output Classes

streambuf

Declared:

Derived by:

streanbu. h
fil ebuf, stdiobuf, strstreanbuf

Thest r eanbuf classisresponsible for maintaining the buffer used to create an efficient
implementation of the stream classes. Through its pure virtual functions, it is also
responsible for the actual communication with the device associated with the stream.

Thest reanbuf classisabstract, due to the presence of pure virtual member functions.
Abstract classes may not be instantiated, only inherited. Hence, st r eanbuf objectswill
not be created by user programs.

Stream objects maintain a pointer to an associated st r eanbuf object and present the
interface that the user deals with most often. Whenever a stream member function wishesto
read or write characters, it usesthe r dbuf member function to access the associated

st r eambuf object and its member functions. Through judicious use of inline functions,
most reads and writes of characters access the buffer directly without even doing a function
call. Whenever the buffer getsfilled (writing) or exhausted (reading), these inline functions
invoke the function required to rectify the situation so that the proper action can take place.

A st reanbuf object can be unbuffered, but most often has one buffer which can be used
for both input and output operations. The buffer (called the reserve area) is divided into two
areas, called the get area and the put area. For a st r eanbuf object being used exclusively
to write, the get area is empty or not present. Likewise, a st r eanbuf object being used
exclusively for reading has an empty or non-existent put area.

The use of the get area and put area differs among the various classes derived from the
st r eambuf class.

Thefi | ebuf classalowsonly the get area or the put area, but not both, to be active at a
time. Thisfollows from the capability of files opened for both reading and writing to have
operations of each type performed at arbitrary locationsin the file. When writing is
occurring, the characters are buffered in the put area. |f a seek or read operation is done, the
put area must be flushed before the next operation in order to ensure that the characters are
written to the proper location in the file. Similarly, if reading is occurring, characters are
buffered in the get area. If awrite operation is done, the get area must be flushed and
synchronized before the write operation in order to ensure the write occurs at the proper
location inthefile. If aseek operation is done, the get area does not have to be
synchronized, but is discarded. When the get area is empty and aread is done, the

under f | owvirtual member function reads more characters and fills the get area again.
When the put areais full and awriteis done, the over f | owvirtual member function writes
the characters and makes the put area empty again.

Input/Output Classes 807

streambuf

The st di obuf classbehavesinasimilar way tothe f i | ebuf class, but does not need to
switch between the get area and put area, sinceno st di obuf object can be created for
both reading and writing. When the get area is empty and aread is done, the under f | ow
virtual member function reads more characters and fills the get area again. When the put
areaisfull and awriteisdone, the over f | owvirtual member function writes the characters
and makes the put area empty again.

Thestrstreanbuf classdiffersquite markedly fromthe fi | ebuf and st di obuf
classes. Sincethereisno actua source or destination for the charactersin strstream
objects, the buffer itself takes on that role. When writing is occurring and the put area is
full, the over f I owvirtual member function reallocates the buffer to alarger size (if
possible), the put area is extended and the writing continues. If reading is occurring and the
get area is empty, the under f | owvirtual member function checksto seeif the put areais
present and not empty. If so, the get area is extended to overlap the put area.

The reserve area is marked by two pointer values. The base member function returns the
pointer to the start of the buffer. The ebuf member function returns the pointer to the end
of the buffer (last character + 1). The set b protected member function is used to set both
pointers.

Within the reserve area, the get area is marked by three pointer values. The eback member
function returns a pointer to the start of the get area. The egpt r member function returns a
pointer to the end of the get area (last character + 1). The gpt r member function returns
the get pointer. The get pointer is a pointer to the next character to be extracted from the get
area. Characters before the get pointer have already been consumed by the program, while
characters at and after the get pointer have been read from their source and are buffered and
waiting to be read by the program. The set g member function is used to set all three
pointer values. If any of these pointersare NULL, thereis no get area.

Also within the reserve area, the put area is marked by three pointer values. The pbase
member function returns a pointer to the start of the put area. The eppt r member function
returns a pointer to the end of the put area (last character + 1). The ppt r member function
returns the put pointer. The put pointer is a pointer to the next available position into which
acharacter may be stored. Characters before the put pointer are buffered and waiting to be
written to their final destination, while character positions at and after the put pointer have
yet to be written by the program. The set p member function is used to set al three pointer
values. If any of these pointers are NULL, thereisno put area.

Unbuffered I/0 is also possible. If unbuffered, the over f | owvirtual member functionis
used to write single characters directly to their final destination without using the put area.
Similarly, the under f | owvirtual member function is used to read single characters directly
from their source without using the get area.

Protected Member Functions

808 Input/Output Classes

streambuf

The following member functions are declared in the protected interface:

st reanmbuf () ;

streanmbuf (char *, int);
virtual ~streanbuf();

int allocate();

char *base() const;

char *ebuf() const;

int blen() const;

void setb(char *, char *, int);
char *eback() const;

char *gptr() const;

char *egptr() const;

voi d gbunp(streanoff);
void setg(char *, char *, char *);
char *pbase() const;

char *pptr() const;

char *epptr() const;

voi d pbunp(streanoff);
void setp(char *, char *);
int unbuffered(int);

i nt unbuffered() const;
virtual int doallocate();

Public Member Functions
The following member functions are declared in the public interface:

nt in_avail () const;

nt out waiting() const;
nt snextc();

nt sgetn(char *, int);
nt speekc();

nt sgetc();

nt sgetchar();

nt sbunpc();

voi d stossc();

i nt sputbackc(char);
int sputc(int);

int sputn(char const *, int);
voi d dbp();

virtual int do_sgetn(char *, int);
virtual int do_sputn(char const *, int);
virtual int pbackfail(int);

virtual int overflow int = EOF) = O;
virtual int underflow() = O;

Input/Output Classes 809

streambuf

virtual streanbuf *setbuf(char *, int);
virtual streanpos seekoff(streanoff, ios::seekdir

i 0s::opennmode = ios::in|ios::out);
virtual streanpos seekpos(streanpos,
i 0s::opennmode = ios::in|ios::out);

virtual int sync();

SeeAlso: fil ebuf, stdiobuf, strstreanbuf

810 Input/Output Classes

streambuf::allocate()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <streanbu. h>
pr ot ect ed:
int streanmbuf::allocate();

Theal | ocat e protected member function works in tandem with the doal | ocat e
protected virtual member function to manage allocation of the st r eanbuf object reserve
area. Classesderived from the st r eanbuf class should cal the al | ocat e protected
member function, rather than the doal | ocat e protected virtual member function. The

al | ocat e protected member function determines whether or not the st r eanbuf object is
allowed to alocate a buffer for use asthereserve area. If areserve area aready exists or if
the st r eanbuf object unbuffering state is non-zero, the al | ocat e protected member
function fails. Otherwise, it callsthe doal | ocat e protected virtual member function.

Theal | ocat e protected member function returns __NOT _EOF on success, otherwise EOF
isreturned.

st reanbuf : : doal | ocat e, under f| ow, over f | ow

Input/Output Classes 811

streambuf::base()

Synopsis: #i ncl ude <streanbu. h>

pr ot ect ed:

char *streanbuf:: base() const;

Semantics: Thebase protected member function returns a pointer to the start of the reserve area that
thest r eambuf object isusing.

Thereserve area, get area, and put area pointer functions return the following values:

base()
ebuf ()
bl en()

eback()

gptr()
egptr()

pbase()

pptr()
epptr()

start of the reserve area.
end of thereserve area.
length of the reserve area.

start of the get area.
the get pointer.
end of the get area.

start of the put area.
the put pointer.
end of the put area.

From eback to gpt r are characters buffered and read. From gptr toegptr are
characters buffered but not yet read. From pbase to ppt r are characters buffered and not
yet written. From ppt r to eppt r isunused buffer area.

Results: The base protected member function returns a pointer to the start of the reserve area that
thest r eambuf objectisusing. If the st r eanbuf object currently does not have a
reserve area, NULL is returned.

SeeAlso: streanbuf:: bl en, ebuf,setb

812 Input/Output Classes

streambuf::blen()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <streanbu. h>
pr ot ect ed:
i nt streanbuf::blen() const;

The bl en protected member function reports the length of the reserve area that the
st r eanbuf objectisusing.

Thereserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.
ebuf () end of thereserve area.
bl en() length of the reserve area.

eback() start of the get area.
gptr() the get pointer.
egptr () end of the get area.

pbase() start of the put area.
pptr() the put pointer.
epptr () end of the put area.

From eback to gpt r are characters buffered and read. From gptr toegptr are
characters buffered but not yet read. From pbase to ppt r are characters buffered and not
yet written. From ppt r to eppt r isunused buffer area.

The bl en protected member function returns the length of the reserve area that the

st reanmbuf objectisusing. If the st r eanbuf object currently does not have areserve
area, zero isreturned.

st reanbuf : : base, ebuf,setb

Input/Output Classes 813

streambuf::dbp()

Synopsis: #i ncl ude <streanbu. h>
public:
voi d streanbuf::dbp();

Semantics: The dbp public member function dumps information about the st r eanbuf object directly
to st dout , and is used for debugging classes derived from the st r eanmbuf class.

Thefollowing is an example of what the dbp public member function dumps:
STREAMBUF Debug | nf o:

this = 00030679, unbuffered = 0, delete_reserve =1
base = 00070010, ebuf = 00070094

eback = 00000000, gptr = 00000000, egptr = 00000000
pbase = 00070010, pptr = 00070010, epptr = 00070094

814 Input/Output Classes

streambuf::do_sgetn()

Synopsis:

Semantics:

#i ncl ude <streanbu. h>
public:
virtual int do_sgetn(char *buf, int len);

Thedo_sget n public virtual member function works in tandem with the sget n member
function to transfer len characters from the get area into buf.

Classes derived from the st r eanbuf class should call the sget n member function, rather
than the do_sget n public virtual member function.

Derived Implementation Protocol:

Classes derived from the st r eanbuf class that implement the do_sget n public virtual
member function should support copying up to len characters from the source through the get
area and into buf.

Default Implementation:

Results:

See Also;

The default do _sget n public virtual member function provided with the st r eanbuf
classcallsthe under f | owvirtual member function to fetch more characters and then
copies the characters from the get area into buf.

The do_sget n public virtual member function returns the number of characters
successfully transferred.

st reanbuf :: sgetn

Input/Output Classes 815

streambuf::do_sputn()

Synopsis: #i ncl ude <streanbu. h>
public:
virtual int do_sputn(char const *buf, int len);

Semantics: Thedo_sput n public virtual member function works in tandem with the sput n member
function to transfer len characters from buf to the end of the put area and advances the put
pointer.

Classes derived from the st r eanbuf class should call the sput n member function, rather
than the do_sput n public virtual member function.

Derived Implementation Protocol:
Classes derived from the st r eanbuf class that implement the do _sput n public virtual
member function should support copying up to len characters from buf through the put area
and out to the destination device.

Default Implementation:
The default do_sput n public virtual member function provided with the st r eanbuf
classcallsthe over f | owvirtual member function to flush the put area and then copies the
rest of the characters from buf into the put area.

Results: Thedo_sput n public virtual member function returns the number of characters
successfully written. If an error occurs, this number may be less than len.

SeeAlso: streanbuf::sputn

816 Input/Output Classes

streambuf::doallocate()

Synopsis:

Semantics:

#i ncl ude <streanbu. h>
pr ot ect ed:
virtual int streanbuf::doallocate();

Thedoal | ocat e protected virtual member function manages allocation of the
st r eambuf object’ sreserve area in tandem with the al | ocat e protected member
function.

Classes derived from the st r eanbuf class should call the al | ocat e protected member
function rather than the doal | ocat e protected virtual member function.

Thedoal | ocat e protected virtual member function does the actual memory allocation,
and can be defined for each class derived from the st r eanbuf class.

Derived Implementation Protocol:

Classes derived from the st r eanbuf class should implement the doal | ocat e protected
virtual member function such that it does the following:

1. attemptsto alocate an area of memory,
2. cdlstheset b protected member function to initialize the reserve area pointers,

3. performs any class specific operations required.

Default Implementation:

Results:

See Also;

The default doal | ocat e protected virtual member function provided with the

st reanmbuf class attemptsto allocate a buffer areawith the oper at or newintrinsic
function. It then callsthe set b protected member function to set up the pointers to the
reserve area.

Thedoal | ocat e protected virtual member function returns __NOT_ECF on success,
otherwise ECF isreturned.

streanbuf::all ocate

Input/Output Classes 817

streambuf::eback()

Synopsis: #i ncl ude <streanbu. h>

pr ot ect ed:

char *streanbuf::eback() const;

Semantics: The eback protected member function returns a pointer to the start of the get area within
thereserve area used by the st r eanbuf object.

Thereserve area, get area, and put area pointer functions return the following values:

base()
ebuf ()
bl en()

eback()

gptr()
egptr()

pbase()

pptr()
epptr()

start of the reserve area.
end of thereserve area.
length of the reserve area.

start of the get area.
the get pointer.
end of the get area.

start of the put area.
the put pointer.
end of the put area.

From eback to gpt r are characters buffered and read. From gptr toegptr are
characters buffered but not yet read. From pbase to ppt r are characters buffered and not
yet written. From ppt r to eppt r isunused buffer area.

Results: The eback protected member function returns a pointer to the start of the get area. If the
st reanbuf object currently does not have aget area, NULL isreturned.

SeeAlso: streanbuf::egptr,gptr,setg

818 Input/Output Classes

streambuf::ebuf()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <streanbu. h>
pr ot ect ed:
char *streanbuf::ebuf() const;

The ebuf protected member function returns a pointer to the end of the reserve area that the
st r eanmbuf objectisusing. The character pointed at is actually the first character past the
end of the reserve area.

Thereserve area, get area, and put area pointer functions return the following values:

base() start of thereserve area.
ebuf () end of thereserve area.
bl en() length of the reserve area.

eback() start of the get area.
gptr() the get pointer.
egptr () end of the get area.

pbase() start of the put area.

pptr() the put pointer.

epptr () end of the put area.

From eback to gpt r are characters buffered and read. From gptr toegptr are
characters buffered but not yet read. From pbase to ppt r are characters buffered and not
yet written. From ppt r to eppt r isunused buffer area.

The ebuf protected member function returns a pointer to the end of thereserve area. If the
st reanmbuf object currently does not have areserve area, NULL isreturned.

st reanbuf : : base, bl en, setb

Input/Output Classes 819

streambuf::egptr()

Synopsis: #i ncl ude <streanbu. h>

pr ot ect ed:

char *streanbuf::egptr() const;

Semantics: Theegpt r protected member function returns a pointer to the end of the get area within the
reserve area used by the st r eanbuf object. The character pointed at is actually the first
character past the end of the get area.

Thereserve area, get area, and put area pointer functions return the following values:

base()
ebuf ()
bl en()

eback()

gptr()
egptr()

pbase()

pptr()
epptr()

start of thereserve area.
end of thereserve area.
length of the reserve area.

start of the get area.
the get pointer.
end of the get area.

start of the put area.
the put pointer.
end of the put area.

From eback to gpt r are characters buffered and read. From gptr toegptr are
characters buffered but not yet read. From pbase to ppt r are characters buffered and not
yet written. From ppt r to eppt r isunused buffer area.

Results: Theegpt r protected member function returns a pointer to the end of the get area. If the
st r eanmbuf object currently does not have aget area, NULL is returned.

SeeAlso: streanbuf:: eback, gptr,setg

820 Input/Output Classes

streambuf::epptr()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <streanbu. h>
pr ot ect ed:
char *streanbuf::epptr() const;

Theeppt r protected member function returns a pointer to the end of the put area within the
reserve area used by the st r eanbuf object. The character pointed at is actually the first
character past the end of the put area.

Thereserve area, get area, and put area pointer functions return the following values:

base() start of thereserve area.
ebuf () end of thereserve area.
bl en() length of the reserve area.

eback() start of the get area.
gptr() the get pointer.
egptr () end of the get area.

pbase() start of the put area.

pptr() the put pointer.

epptr () end of the put area.

From eback to gpt r are characters buffered and read. From gptr toegptr are
characters buffered but not yet read. From pbase to ppt r are characters buffered and not
yet written. From ppt r to eppt r isunused buffer area.

Theeppt r protected member function returns a pointer to the end of the put area. If the
st r eanbuf object currently does not have aput area, NULL is returned.

streanbuf: : pbase, pptr,setp

Input/Output Classes 821

streambuf::gbump()

Synopsis: #i ncl ude <streanbu. h>
pr ot ect ed:
voi d streanbuf::gbunp(streanoff offset);

Semantics: The gbunp protected member function increments the get pointer by the specified offset,
without regard for the boundaries of the get area. The offset parameter may be positive or
negative.

Results: The gbunp protected member function returns nothing.

SeeAlso: streanbuf::gptr, pbunp, sbunpc, sput backc

822 Input/Output Classes

streambuf::gptr()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <streanbu. h>
pr ot ect ed:
char *streanbuf::gptr() const;

Thegpt r protected member function returns a pointer to the next available character in the
get area within the reserve area used by the st r eanbuf object. This pointer iscaled the
get pointer.

If the get pointer points beyond the end of the get area, all charactersin the get area have
been read by the program and a subsequent read causes the under f | ow virtual member
function to be called to fetch more characters from the source to which the st r eanbuf
object is attached.

Thereserve area, get area, and put area pointer functions return the following values:

base() start of the reserve area.
ebuf () end of thereserve area.
bl en() length of the reserve area.

eback() start of the get area.
agptr() the get pointer.
egptr () end of the get area.

pbase() start of the put area.

pptr() the put pointer.

epptr () end of the put area.

From eback to gpt r are characters buffered and read. From gptr toegptr are
characters buffered but not yet read. From pbase to ppt r are characters buffered and not
yet written. From ppt r to eppt r isunused buffer area.

The gpt r protected member function returns a pointer to the next available character in the
get area. If the st r eanmbuf object currently does not have aget area, NULL isreturned.

st reanbuf : : eback, egptr,setg

Input/Output Classes 823

streambuf::in_avail()

Synopsis: #i ncl ude <streanbu. h>
public:
int streambuf::in_avail () const;

Semantics: Thei n_avai | public member function computes the number of input characters buffered
in the get area that have not yet been read by the program. These characters can be read with
a guarantee that no errors will occur.

Results: Thei n_avai | public member function returns the number of buffered input characters.

SeeAlso: streanmbuf::egptr,gptr

824 Input/Output Classes

streambuf::out_waiting()

Synopsis: #i ncl ude <streanbu. h>
public:
i nt streanbuf::out_waiting() const;

Semantics: Theout _wai ti ng public member function computes the number of characters that have
been buffered in the put area and not yet been written to the output device.

Results: Theout _wai t i ng public member function returns the number of buffered output
characters.

SeeAlso: streanbuf:: pbase, pptr

Input/Output Classes 825

streambuf::overflow()

Synopsis: #i ncl ude <streanbu. h>
public:
virtual int streanbuf::overflowm int ch = EOF) = 0;
Semantics: Theover f| owpublic virtual member function is used to flush the put area when it isfull.
Derived Implementation Protocol:
Classes derived from the st r eanbuf class should implement the over f | ow public virtual
member function so that it performs the following:

1. ifnoreserveareaispresent and the st r eanbuf object isnot unbuffered,
allocate areserve area using the al | ocat e member function and set up the
reserve area pointers using the set b protected member function,

2. flush any other uses of the reserve area,

3. writeany charactersin the put area to the st r eanbuf object’s destination,

4. set up the put area pointers to reflect the characters that were written,

5. return __NOT_EOF on success, otherwise return EOF.

Default Implementation:
Thereisno default st r eanbuf classimplementation of the over f | ow public virtual
member function. The over f | ow public virtual member function must be defined for all

classes derived from the st r eanbuf class.

Results: Theover f | owpublic virtual member function returns __NOT _ECF on success, otherwise
EOF isreturned.

See Also: filebuf::overfl ow, stdi obuf::overflow, strstreanbuf::overflow

826 Input/Output Classes

streambuf::pbackfail()

Synopsis: #i ncl ude <streanbu. h>
public:
virtual int streanbuf::pbackfail(int ch);

Semantics: Thepbackf ai | public virtual member function is called by the sput backc member
function when the get pointer is at the beginning of the get area, and so thereis no placeto
put the ch parameter.

Derived Implementation Protocol:
Classes derived from the st r eanbuf class should implement the pbackf ai | public
virtual member function such that it attemptsto put ch back into the source of the stream.

Default Implementation:

The default st r eanbuf classimplementation of the pbackf ai | public virtual member
function isto return ECF.

Results: If the pbackf ai | public virtual member function succeeds, it returns ch. Otherwise, EOF
is returned.

Input/Output Classes 827

streambuf::pbase()

Synopsis: #i ncl ude <streanbu. h>

pr ot ect ed:

char *streanbuf:: pbase() const;

Semantics: The pbase protected member function returns a pointer to the start of the put area within
thereserve area used by the st r eanbuf object.

Thereserve area, get area, and put area pointer functions return the following values:

base()
ebuf ()
bl en()

eback()

gptr()
egptr()

pbase()

pptr()
epptr()

start of the reserve area.
end of thereserve area.
length of the reserve area.

start of the get area.
the get pointer.
end of the get area.

start of the put area.
the put pointer.
end of the put area.

From eback to gpt r are characters buffered and read. From gptr toegptr are
characters buffered but not yet read. From pbase to ppt r are characters buffered and not
yet written. From ppt r to eppt r isunused buffer area.

Results: The pbase protected member function returns a pointer to the start of the put area. If the
st r eanbuf object currently does not have a put area, NULL is returned.

SeeAlso: streanbuf::epptr, pptr,setp

828 Input/Output Classes

streambuf::pbump()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <streanbu. h>
pr ot ect ed:
voi d streanbuf:: pbunp(streanoff offset);

The pbunp protected member function increments the put pointer by the specified offset,
without regard for the boundaries of the put area. The offset parameter may be positive or
negative.

The pbunp protected member function returns nothing.

st reanbuf : : gbunp, pbase, pptr

Input/Output Classes 829

streambuf::pptr()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <streanbu. h>
pr ot ect ed:
char *streanbuf::pptr() const;

The ppt r protected member function returns a pointer to the next available space in the put
area within the reserve area used by the st r eanbuf object. This pointer is called the put
pointer.

If the put pointer points beyond the end of the put area, the put area is full and a subsequent
write causesthe over f | owvirtual member function to be called to empty the put area to
the device to which the st r eambuf object is attached.

Thereserve area, get area, and put area pointer functions return the following values:

base() start of thereserve area.
ebuf () end of thereserve area.
bl en() length of the reserve area.

eback() start of the get area.
gptr() the get pointer.
egptr () end of the get area.

pbase() start of the put area.
pptr() the put pointer.
epptr () end of the put area.

From eback to gpt r are characters buffered and read. From gptr toegptr are
characters buffered but not yet read. From pbase to ppt r are characters buffered and not
yet written. From ppt r to eppt r isunused buffer area.

The ppt r protected member function returns a pointer to the next available space in the put
area. If the st r eambuf object currently does not have aput area, NULL is returned.

st reanbuf : : epptr, pbase, setp

830 Input/Output Classes

streambuf::sbumpc()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <streanbu. h>
public:
i nt streanbuf::sbunpc();

The sbunpc public member function extracts the next available character from the get area
and advances the get pointer. If no character isavailable, it callsthe under f | owvirtua
member function to fetch more characters from the source into the get area.

Dueto the sbunpc member functions's awkward name, the sget char member function
was added to take its place in the WATCOM implementation.

The sbunpc public member function returns the next available character in the get area. If
no character is available, EOF isreturned.

st reanbuf : : gbunp, sget ¢, sget char, sget n, snext c, sput backc

Input/Output Classes 831

streambuf::seekoff()

Synopsis:

Semantics:

#i ncl ude <streanbu. h>

public:

virtual streanpos streanbuf::seekoff(streanoff offset,
ios::seekdir dir,

i 0s::opennode node);

Theseekof f public virtual member function is used for positioning to arelative location
withinthe st r eanbuf object, and hence within the device that is connected to the

st r eanbuf object. The offset and dir parameters specify the relative change in position.
The mode parameter controls whether the get pointer and/or the put pointer are repositioned.

Derived Implementation Protocol:

Classes derived from the st r eanbuf class should implement the seekof f virtual
member function so that it uses its parametersin the following way.

The mode parameter may bei 0s::in,io0s::out,orios::in|ios::out andshould
be interpreted as follows, provided the interpretation is meaningful:

ios::in the get pointer should be moved.
i 0s::out the put pointer should be moved.
ios::in|ios::out both the get pointer and the put pointer should be moved.

If mode has any other value, the seekof f public virtual member function fails.

Thedir parameter may bei os: : beg,i os:: cur,orios:: end andisinterpretedin
conjunction with the offset parameter as follows:

i 0s:: beg theoffsetisrelativeto the start and should be a positive value.

i 0s::cur theoffsetisrelativeto the current position and may be positive
(seek towards end) or negative (seek towards start).

i 0s::end theoffsetisrelativeto the end and should be a negative value.

If the dir parameter has any other value, or the offset parameter does not have an appropriate
sign, the seekof f public virtual member function fails.

Default Implementation:

Results:

See Also:

The default implementation of the seekof f public virtual member function provided by the
st reanbuf classreturns ECF.

Theseekof f public virtual member function returns the new position in the stream on
success, otherwise ECF is returned.

st reanbuf : : seekpos

832 Input/Output Classes

streambuf::seekpos()

Synopsis:

Semantics:

#i ncl ude <streambu. h>

public:
virtual streanpos streanbuf::seekpos(streanpos pos,
i 0s::opennmode node = ios::in|ios::out);

The seekpos public virtual member function is used for positioning to an absolute location
within the st r eanbuf object, and hence within the device that is connected to the

st r eambuf object. The pos parameter specifies the absolute position. The mode
parameter controls whether the get pointer and/or the put pointer are repositioned.

Derived Implementation Protocol:

Classes derived from the st r eanbuf class should implement the seekpos public virtual
member function so that it uses its parametersin the following way.

The mode parameter may bei 0s::in,io0s::out,orios::in|ios::out andshould
be interpreted as follows, provided the interpretation is meaningful:

ios::in the get pointer should be moved.
i 0s::out the put pointer should be moved.
ios::in|ios::out both the get pointer and the put pointer should be moved.

If mode has any other value, the seekpos public virtual member function fails.

In general the seekpos public virtual member function is equivalent to calling the
seekof f virtual member function with the offset set to pos, the direction setto i 0s: : beg
and the mode set to mode.

Default Implementation:

Results:

See Also:

The default implementation of the seekpos public virtual member function provided by the
st r eambuf classcallsthe seekof f virtual member function with the offset set to pos, the
directionsettoi os: : beg, and the mode set to mode.

The seekpos public virtual member function returns the new position in the stream on
success, otherwise ECF is returned.

st reanbuf : : seekof f

Input/Output Classes 833

streambuf::sethb()

Synopsis:

Semantics:

See Also:

#i ncl ude <streanbu. h>
pr ot ect ed:
voi d streanbuf::setb(char *base, char *ebuf, int autodel);

The set b protected member function is used to set the pointersto the reserve area that the
st r eanbuf objectisusing.

The base parameter is a pointer to the start of the reserve area and corresponds to the value
that the base member function returns.

The ebuf parameter is a pointer to the end of the reserve area and corresponds to the value
that the ebuf member function returns.

The autodel parameter indicates whether or not the st r eanbuf object can free the reserve
area when the st r eanbuf object is destroyed or when anew reserve areaisset upin a
subsequent call to the set b protected member function. If the autodel parameter is
non-zero, the st r eanmbuf object can delete the reserve area, using the

oper at or del et e intrinsic function. Otherwise, a zero value indicates that the buffer
will be deleted elsewhere.

If either of the base or ebuf parameters are NULL or if ebuf <= base, the st r eamrbuf object
does not have a buffer and input/output operations are unbuffered, unless another buffer is
set up.

Note that the set b protected member function is used to set the reserve area pointers, while
theset buf protected member function is used to offer a buffer to the st r eanbuf object.

st reanbuf : : base, bl en, ebuf, set buf

834 Input/Output Classes

streambuf::setbuf()

Synopsis:

Semantics:

#i ncl ude <streanbu. h>
public:
virtual streanbuf *streanbuf::setbuf(char *buf, int len);

Theset buf public virtual member function is used to offer a buffer specified by the buf
and len parameters to the st r eambuf object for use asitsreserve area. Note that the

set buf public virtual member function is used to offer a buffer, whilethe set b protected
member function is used to set the reserve area pointers once a buffer has been accepted.

Derived Implementation Protocol:

Classes derived from the st r eanbuf class may implement the set buf public virtual
member function if the default behavior is not suitable.

Derived classes that provide their own implementations of the set buf public virtual
member function may accept or reject the offered buffer. Often, if abuffer is already
allocated, the offered buffer is rejected, asit may be difficult to transfer the information from
the current buffer.

Default Implementation:

Results:

See Also;

The default set buf public virtual member function provided by the st r eanbuf class
rejects the buffer if oneis already present.

If no buffer is present and either buf is NULL or len is zero, the offer is accepted and the
st r eambuf object isunbuffered.

Otherwise, no buffer is present and oneis specified. If len islessthan five charactersthe
buffer istoo small and it isrejected. Otherwise, the buffer is accepted.

The set buf public virtual member function returns the address of the st r eanbuf object
if the offered buffer is accepted, otherwise NULL is returned.

streanbuf::setb

Input/Output Classes 835

streambuf::setg()

Synopsis: #i ncl ude <streanbu. h>
pr ot ect ed:
voi d streanbuf::setg(char *eback, char *gptr, char *egptr);

Semantics: Theset g protected member function is used to set the three get area pointers.

The eback parameter is a pointer to the start of the get area and corresponds to the value that
the eback member function returns.

The gptr parameter is a pointer to the first available character in the get area, that is, the get
pointer, and usualy is greater than the eback parameter in order to accommodate a putback
area. The gptr parameter corresponds to the value that the gpt r member function returns.

The egptr parameter is apointer to the end of the get area and corresponds to the value that
the egpt r member function returns.

If any of the three parameters are NULL, thereis no get area.

SeeAlso: streanbuf:: eback, egptr,gptr

836 Input/Output Classes

streambuf::setp()

Synopsis:

Semantics:

See Also:

#i ncl ude <streanbu. h>
pr ot ect ed:
voi d streanbuf::setp(char *pbase, char *epptr);

The set p protected member function is used to set the three put area pointers.

The pbase parameter is a pointer to the start of the put area and corresponds to the value that
the pbase member function returns.

The epptr parameter is a pointer to the end of the put area and corresponds to the value that
the eppt r member function returns.

The put pointer is set to the pbase parameter value and corresponds to the value that the
ppt r member function returns.

If either parameter is NULL, thereisno put area.

streanbuf: : epptr, pbase, pptr

Input/Output Classes 837

streambuf::sgetc()

Synopsis: #i ncl ude <streanbu. h>
public:
i nt streanbuf::sgetc();

Semantics: Thesget ¢ public member function returns the next available character in the get area. The
get pointer isnot advanced. If the get area is empty, the under f I owvirtual member
function is called to fetch more characters from the source into the get area.

Due to the sget ¢ member function’s confusing name (the C library get ¢ function does
advance the pointer), the speekc member function was added to take its place in the
WATCOM implementation.

Results: The sget ¢ public member function returns the next available character in the get area. If
no character is available, EOF isreturned.

SeeAlso: streanbuf:: sbunpc, sget char, sget n, snext ¢, speekc

838 Input/Output Classes

streambuf::sgetchar()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <streanbu. h>
public:
i nt streanbuf::sgetchar();

Thesget char public member function extracts the next available character from the get
area and advances the get pointer. If no character is available, it callsthe under f | ow
virtual member function to fetch more characters from the source into the get area.

Dueto the sbunpc member functions's awkward name, the sget char member function
was added to take its place in the WATCOM implementation.

Thesget char public member function returns the next available character in the get area.
If no character isavailable, ECF is returned.

st reanbuf : : gbunp, sget ¢, sget char, sget n, snext c, speekc, sput backc

Input/Output Classes 839

streambuf::sgetn()

Synopsis: #i ncl ude <streanbu. h>
public:
i nt streanbuf::sgetn(char *buf, int len);

Semantics: Thesget n public member function transfers up to len characters from the get area into buf.
If there are not enough charactersin the get area, the do_sget n virtual member function is
called to fetch more.

Classes derived from the st r eanbuf class should call the sget n public member function,
rather than the do_sget n virtua member function.

Results: The sget n public member function returns the number of characters transferred from the
get area into buf.

SeeAlso: streanbuf::do_sgetn, sbunpc, sget c, sget char, speekc

840 Input/Output Classes

streambuf::snextc()

Synopsis: #i ncl ude <streanbu. h>
public:
i nt streanbuf::snextc();

Semantics: Thesnext ¢ public member function advances the get pointer and then returns the character
following the get pointer. The get pointer isleft pointing at the returned character.

If the get pointer cannot be advanced, the under f | owvirtual member function is called to
fetch more characters from the source into the get area.

Results: The snext ¢ public member function advances the get pointer and returns the next available
character in the get area. If thereisno next available character, EOF is returned.

SeeAlso: streanbuf:: sbunpc, sgetc, sget char, sget n, speekc

Input/Output Classes 841

streambuf::speekc()

Synopsis: #i ncl ude <streanbu. h>
public:
i nt streanbuf::speekc();

Semantics: The speekc public member function returns the next available character in the get area.
The get pointer is not advanced. If the get area is empty, the under f | owvirtual member
function is called to fetch more characters from the source into the get area.

Due to the sget ¢ member function’s confusing name (the C library get ¢ function does
advance the pointer), the speekc member function was added to take its place in the
WATCOM implementation.

Results: The speekc public member function returns the next available character in the get area. If
no character is available, EOF isreturned.

SeeAlso: streanbuf:: sbunpc, sget c, sget char, sgetn, snextc

842 Input/Output Classes

streambuf::sputbackc()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <streanbu. h>
public:
i nt streanbuf::sputbackc(char ch);

The sput backc public member function is used to put a character back into the get area.
The ch character specified must be the same as the character before the get pointer, otherwise
the behavior is undefined. The get pointer is backed up by one position. At least four
characters may be put back without any intervening reads.

The sput backc public member function returns ch on success, otherwise EOF is returned.

st reambuf : : gbunp, sbunpc, sget char

Input/Output Classes 843

streambuf::sputc()

Synopsis: #i ncl ude <streanbu. h>
public:

i nt streanbuf::sputc(int ch);

Semantics: The sput ¢ public member function adds the character ch to the end of the put area and
advances the put pointer. If the put area isfull before the character is added, the over f | ow
virtual member function is called to empty the put area and write the character.

Results: The sput ¢ public member function returns ch on success, otherwise EOF is returned.

SeeAlso: streanbuf::sgetc, sputn

844 Input/Output Classes

streambuf::sputn()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <streanbu. h>
public:
i nt streanbuf::sputn(char const *buf, int len);

The sput n public member function transfers up to len characters from buf to the end of the
put area and advance the put pointer. If the put area isfull or becomes full and more
characters are to be written, the do_sput n virtual member function is called to empty the
put area and finish writing the characters.

Classes derived from the st r eanbuf class should call the sput n public member function,
rather than the do_sput n virtual member function.

The sput n public member function returns the number of characters successfully written.
If an error occurs, this number may be less than len.

st reanbuf::do_sputn, sputc

Input/Output Classes 845

streambuf::stossc()

Synopsis: #i ncl ude <streanbu. h>
public:
voi d streanbuf::stossc();

Semantics: Thest ossc public member function advances the get pointer by one without returning a
character. If the get area is empty, the under f | owvirtual member function is called to
fetch more characters and then the get pointer is advanced.

SeeAlso: st reanbuf:: gbunp, sbunpc, sget char, snext c

846 Input/Output Classes

streambuf::streambuf()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <streanbu. h>
pr ot ect ed:
st reanmbuf : : streanbuf ();

Thisform of the protected st r eanbuf constructor creates an empty st r eanbuf object
with all fieldsinitialized to zero. No reserve area isyet alocated, but the st r eanbuf
object is buffered unless a subsequent call to the set buf or unbuf f er ed member
functions dictate otherwise.

Thisform of the protected st r eanmbuf constructor creates aninitialized st r eanbuf
object with no associated reserve area.

~st r eanbuf

Input/Output Classes 847

streambuf::streambuf()

Synopsis: #i ncl ude <streanbu. h>
pr ot ect ed:
st reanbuf :: streanbuf (char *buf, int len);

Semantics: Thisform of the protected st r eanbuf constructor creates an empty st r eanbuf object
with all fieldsinitialized to zero. The buf and len parameters are passed to the set buf
member function, which sets up the buffer (if specified), or makesthe st r eanbuf object
unbuffered (if the buf parameter is NULL or the len parameter is not positive).

Results: Thisform of the protected st r eanmbuf constructor creates aninitialized st r eanbuf
object with an associated reserve area.

See Also: ~st r eanbuf , set buf

848 Input/Output Classes

streambuf::~streambuf()

Synopsis: #i ncl ude <streanbu. h>
pr ot ect ed:
virtual streanbuf::~streanbuf();

Semantics: Thest r eanmbuf object isdestroyed. If the buffer was allocated by the st r eanbuf
object, it isfreed. Otherwise, the buffer is not freed and must be freed by the user of the
st reambuf object. The call to the protected ~st r eanbuf destructor isinserted
implicitly by the compiler at the point where the st r eanbuf object goes out of scope.

Results: The st r eanbuf object is destroyed.

SeeAlso: st reanbuf

Input/Output Classes 849

streambuf::sync()

Synopsis: #i ncl ude <streanbu. h>
public:
virtual int streanbuf::sync();

Semantics: Thesync public virtual member function is used to synchronize the st r eanbuf object’s
get area and put area with the associated device.

Derived Implementation Protocol:
Classes derived from the st r eanbuf class should implement the sync public virtua
member function such that it attempts to perform the following:

1. flushthe put area,

2. discard the contents of the get area and reposition the stream device so that the
discarded characters may be read again.

Default Implementation:
The default implementation of the sync public virtual member function provided by the
st reambuf classtakes no action. It succeedsif the get area and the put area are empty,
otherwise it fails.

Results: The sync public virtual member function returns __NOT _EOF on success, otherwise EOF is
returned.

850 Input/Output Classes

streambuf::unbuffered()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <streanbu. h>

pr ot ect ed:

int ios::unbuffered() const;

int ios::unbuffered(int unbuf);

The unbuf f er ed protected member function is used to query and/or set the unbuffering
state of the st r eanbuf object. A non-zero unbuffered state indicates that the st r eanbuf
object is unbuffered. An unbuffered state of zero indicates that the st r eanbuf objectis
buffered.

Thefirst form of the unbuf f er ed protected member function is used to query the current
unbuffering state.

The second form of the unbuf f er ed protected member function is used to set the
unbuffering state to unbuf.

Note that the unbuffering state only affectsthe al | ocat e protected member function,
which does nothing if the unbuffering state is non-zero. Setting the unbuffering state to a
non-zero value does not mean that future 1/0 operations will be unbuffered.

To determineif current 1/O operations are unbuffered, use the base protected member
function. A return value of NULL from the base protected member function indicates that
unbuffered 1/0O operations will be used.

The unbuf f er ed protected member function returns the previous unbuffered state.

streanbuf:: al | ocat e, pbase, set buf

Input/Output Classes 851

streambuf::underflow()

Synopsis: #i ncl ude <streanbu. h>
public:
virtual int streanbuf::underflow() = O;

Semantics: Theunder f | owpublic virtual member function is used to fill the get area whenitis
empty.

Derived Implementation Protocol:
Classes derived from the st r eanbuf class should implement the under f | ow public
virtual member function so that it performs the following:

1. ifnoreserveareais present and the st r eanbuf object isbuffered, allocate the
reserve area using the al | ocat e member function and set up the reserve area
pointers using the set b protected member function,

2. flush any other uses of the reserve area,

3. read some characters from the st r eanbuf object’s sourceinto the get area,

4. setup the get area pointers to reflect the characters that were read,

5. return thefirst character of the get area, or ECF if no characters could be read.

Default Implementation:
Thereisno default st r eanbuf classimplementation of the under f | ow public virtual
member function. The under f | ow public virtual member function must be defined for al

classes derived from the st r eanbuf class.

Results: The under f | ow public virtual member function returns the first character read into the get
area, or EOF if no characters could be read.

SeeAlso: fil ebuf::underfl ow, stdi obuf::underflow, strstreanbuf::underfl ow

852 Input/Output Classes

strstream

Declared:

strstrea. h

Derived from:

See Also:

strstreanbase, i ostream

Thest r st r eamclassisused to create and write to string stream objects.

The st r st r eamclass provides little of its own functionality. Derived from the

st rstreanbase and i ost r eamclasses, its constructors and destructor provide
simplified access to the appropriate equivalents in those base classes. The member functions
provide specialized access to the string stream object.

Of the available I/O stream classes, creating a st r st r eamobject is the preferred method of
performing read and write operations on a string stream.

Public Member Functions
The following member functions are declared in the public interface:

strstream));
strstream(char *,

int,

i 0s::opennmode = ios::in|ios::out);
strstream signed char *,

int,

i 0s::opennmpde = ios::in|lios::out);
strstream unsigned char *,

int,

i 0s::opennmode = ios::in|ios::out);

~strstream();
char *str();

i strstreamostrstreamstrstreanbase

Input/Output Classes 853

strstream::str()

Synopsis:

Semantics:

Results:

See Also:

#i nclude <strstrea. h>
public:
char *strstream:str();

The st r public member function creates a pointer to the buffer being used by the
st r st reamobject. If the st r st r eamobject was created without dynamic allocation
(static mode), the pointer is the same as the buffer pointer passed in the constructor.

For st r st r eamobjects using dynamic alocation, the st r public member function makes
animplicit call tothe st r st r eanbuf : : f r eeze member function. If nothing has been
written to the st r st r eamobject, the returned pointer will be NULL.

Note that the buffer does not necessarily end with anull character. If the pointer returned by
the st r public member function isto be interpreted as a C string, it isthe program’s
responsibility to ensure that the null character is present.

The st r public member function returns a pointer to the buffer being used by the
st r st r eamobject.

strstreambuf::str,strstreanbuf::freeze

854 Input/Output Classes

strstream::strstream()

Synopsis:

Semantics:

Results:

See Also;

#i nclude <strstrea. h>
public:
strstream:strstrean();

Thisform of the public st r st r eamconstructor creates an empty st r st r eamobject.
Dynamic allocation isused. The inherited stream member functions can be used to access
thest r st r eamobject. Note that the get pointer and put pointer are not necessarily
pointing at the same location, so moving one pointer (e.g. by doing awrite) does not affect
the location of the other pointer.

Thisform of the public st r st r eamconstructor creates an initialized, empty st rstream
object.

~strstream

Input/Output Classes 855

strstream::strstream()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <strstrea. h>

public:
strstream:strstrean{(char *str,
int len,

i 0s::opennode node);
strstream:strstrean(signed char *str,
int |en,

i 0s::opennode node);
strstream:strstrean(unsigned char *str,
int len,

i 0s:: opennode node);

These forms of the public st r st r eamconstructor create aninitialized st r st r eamobject.
Dynamic allocation is not used. The buffer is specified by the str and len parameters. If the

i 0s::appendori os:: at end bhitsare set in the mode parameter, the str parameter is
assumed to contain a C string terminated by a null character, and writing commences at the
null character. Otherwise, writing commences at str. Reading commences at str.

Thisform of the public st r st r eamconstructor creates an initialized st r st r eamobject.

~strstream

856 Input/Output Classes

strstream::~strstream()

Synopsis: #i ncl ude <strstrea. h>
public:
strstream: ~strstream();
Semantics: The public ~st r st r eamdestructor does not do anything explicit. The call to the public
~st r st r eamdestructor isinserted implicitly by the compiler at the point where the
st r st r eamobject goes out of scope.
Results: The st r st reamobject is destroyed.

SeeAlso; strstream

Input/Output Classes 857

strstreambase

Declared:

strstrea. h

Derived from:

i 0s

Derived by: i strstreamostrstreamstrstream

See Also:

Thestr st reanbase classis abase class that provides common functionality for the three
string stream-based classes, i st rstream ostrstreamand strstream The

st r st reanbase classisderived from the i 0s class which provides the stream state
information. The st r st r eanbase class provides constructors for string stream objects
and one member function.

Protected Member Functions

The following member functions are declared in the protected interface:

strstreanbase();
strstreanbase(char *, int, char * =0);
~strstreanbase();

Public Member Functions
The following member function is declared in the public interface:
strstreanbuf *rdbuf() const;

i strstreamostrstreamstrstreamstrstreanbuf

858 Input/Output Classes

strstreambase::rdbuf()

Synopsis:

Semantics:

Results:

#i nclude <strstrea. h>
public:
strstreanbuf *strstreanbase::rdbuf() const;

Ther dbuf public member function creates a pointer to the st r st r eanbuf associated
withthe st r st r eanbase object. Sincethe st rstreanbuf object is embedded within
thestr st r eanbase object, thisfunction never returns NULL.

Ther dbuf public member function returns a pointer to the st r st r eanbuf associated
withthe st r st r earbase object.

Input/Output Classes 859

strstreambase::strstreambase()

Synopsis: #i ncl ude <strstrea. h>
pr ot ect ed:
st rstreanbase: : strstreanbase();

Semantics: Thisform of the protected st r st r eanbase constructor createsa st r st r eanbase
object that isinitialized, but empty. Dynamic allocation is used to store characters. No
buffer isallocated. A buffer is be allocated when data is first written to the
st r st reanbase object.

Thisform of the protected st r st r eanbase constructor is only used implicitly by the
compiler when it generates a constructor for aderived class.

Results: The protected st r st r eanbase constructor creates an initialized st r st r eanbase
object.

See Also: ~strstreanbase

860 Input/Output Classes

strstreambase::strstreambase()

Synopsis:

Semantics:

Results:

See Also;

#i nclude <strstrea. h>

pr ot ect ed:

st rstreanbase: : strstreanbase(char *str,
int len,

char *pstart);

Thisform of the protected st r st r eanbase constructor createsa st r st r eanbase
object that isinitialized and uses the buffer specified by the str and len parameters asits
reserve area within the associated st r st r eanbuf object. Dynamic allocation is not used.

Thisform of the protected st r st r eanbase constructor is unlikely to be explicitly used,
except in the member initializer list for the constructor of a derived class.

The str, len and pstart parameters are interpreted as follows:
1. Thebuffer starts at str.
2. If lenis positive, the buffer islen characters long.

3. If leniszero, str isapointer to a C string which is terminated by a null character,
and the length of the buffer is the length of the string.

4. If lenisnegative, the buffer isunbounded. Thislast form should be used with
extreme caution, since no buffer istruly unlimited in size and it would be easy to
write beyond the available space.

5. If the pstart parameter is NULL, the st r st r eanbase object isread-only.

6. Otherwise, pstart divides the buffer into two regions. The get area starts at str
and ends at pstart-1. The put area starts at pstart and goes to the end of the
buffer.

The protected st r st r eanbase constructor creates an initialized st r st r eanbase
object.

~str st reanbase

Input/Output Classes 861

strstreambase::~strstreambase()

Synopsis: #i ncl ude <strstrea. h>
pr ot ect ed:
st rstreanbase: : ~strstreanbase();

Semantics: The protected ~st r st r eanbase destructor does not do anything explicit. The call to the
protected ~st r st r eanbase destructor isinserted implicitly by the compiler at the point
wherethe st r st r eanmbase object goes out of scope.

Results: Thest rstreanbase object is destroyed.

SeeAlso: strstreanbase

862 Input/Output Classes

strstreambuf

Declared: strstrea.h

Derived from:
st r eanbuf

Thestrstreanbuf classisderived fromthe st r eanbuf class and provides additional
functionality required to write characters to and read characters from a string buffer. Read
and write operations can occur at different positions in the string buffer, since the get pointer
and put pointer are not necessarily connected. Seek operations are also supported.

Thereserve area used by the st r st r eanbuf object may be either fixed in size or
dynamic. Generaly, input strings are of afixed size, while output streams are dynamic,
since the final size may not be predictable. For dynamic buffers, the st r st r eanbuf
object automatically grows the buffer when necessary.

Thest rstreanbuf classdiffers quite markedly fromthe fi | ebuf and st di obuf
classes. Sincethereisno actual source or destination for the charactersin strstream
objects, the buffer itself takes on that role. When writing is occurring and the put areais
full, the over f I owvirtual member function reall ocates the buffer to alarger size (if
possible), the put area is extended and the writing continues. If reading is occurring and the
get area is empty, the under f | owvirtual member function checksto seeif the put areais
present and not empty. If so, the get area is extended to overlap the put area.

C++ programmers who wish to use string streams without deriving new objects will probably
never explicitly create or usea st r st r eanbuf object.

Protected Member Functions

The following member function is declared in the protected interface:
virtual int doallocate();

Public Member Functions

The following member functions are declared in the public interface:

strstreanbuf ();

strstreanbuf(int);

strstreanmbuf (void *(*)(long), void (*)(void *));
strstreanmbuf (char *, int, char * =0);
~strstreanbuf ();

int alloc_size_increnent(int);

void freeze(int = 1);

char *str();

virtual int overflow int = EOF);

Input/Output Classes 863

strstreambuf

virtual int underflow();

virtual streanbuf *setbuf(char *, int);
virtual streanmpos seekoff(streanoff,

i os::seekdir,

i 0s::opennode);

virtual int sync();

SeeAlso: streanbuf, strstreanbase

864 Input/Output Classes

strstreambuf::alloc_size_increment()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <strstrea. h>

public:

int strstreanbuf::alloc_size_increnent(int increnent);

Theal | oc_si ze_i ncr enent public member function modifies the allocation size used
when the buffer isfirst allocated or reallocated by dynamic alocation. The increment
parameter is added to the previous allocation size for future use.
ThisfunctionisaWATCOM extension.

Theal | oc_si ze_i ncrenment public member function returns the previous value of the
allocation size.

strstreanbuf::doal |l ocate, set buf

Input/Output Classes 865

strstreambuf::doallocate()

Synopsis: #i ncl ude <strstrea. h>
pr ot ect ed:

vi rtual

int strstreanbuf::doallocate();

Semantics: Thedoal | ocat e protected virtual member function is called by the al | ocat e member
function when it is determined that the put area is full and needs to be extended.

Thedoal | ocat e protected virtual member function performs the following steps:

1

If dynamic alocation is not being used, the doal | ocat e protected virtual
member function fails.

A new size for the buffer is determined. If the allocation sizeis bigger than the
current size, the allocation size isused. Otherwise, the buffer size isincreased by
DEFAULT_MAI NBUF_SI ZE, which is512.

A new buffer isalocated. If an allocation function was specified in the
constructor for the st r st r eanmbuf object, that allocation function is used,
otherwisethe oper at or newintrinsic function isused. If the allocation fails,
thedoal | ocat e protected virtual member function fails.

If necessary, the contents of the get area are copied to the newly alocated buffer
and the get area pointers are adjusted accordingly.

The contents of the put area are copied to the newly allocated buffer and the put
area pointers are adjusted accordingly, extending the put area to the end of the
new buffer.

The old buffer isfreed. If afree function was specified in the constructor for the
st r st reanmbuf object, that free function is used, otherwise the
oper at or del et e intrinsic function is used.

Results: Thedoal | ocat e protected virtual member function returns __NOT_ECF on success,
otherwise EOF isreturned.

See Also: strstreanbuf::all oc_size_i ncrenent, set buf

866 Input/Output Classes

strstreambuf::freeze()

Synopsis:

Semantics:

Results:

See Also:

#i nclude <strstrea. h>
public:
void strstreanbuf::freeze(int frozen = 1);

Thef r eeze public member function enables and disables automatic deletion of the reserve
area. If thef r eeze public member function is called with no parameter or a non-zero
parameter, the st r st r eanbuf object isfrozen. If the f r eeze public member functionis
called with a zero parameter, the st r st r eanbuf object is unfrozen.

A frozen st r st r eanmbuf object does not free the reserve area in the destructor. If the
st r st reanbuf object isdestroyed whileit isfrozen, it isthe program’ s responsibility to
also freethereserve area.

If characters are written to the st r st r eanbuf object whileit isfrozen, the effect is
undefined since the reserve area may be reallocated and therefore may move. However, if
thestr st r eambuf object isfrozen and then unfrozen, characters may be written to it.

Thef r eeze public member function returns the previous frozen state.

strstreanbuf::str, ~strstreanbuf

Input/Output Classes 867

strstreambuf::overflow()

Synopsis: #i ncl ude <strstrea. h>
public:
virtual int strstreanmbuf::overflow int ch = ECF);

Semantics: Theover f | ow public virtual member function provides the output communication between
the st r eambuf member functions and the st r st r eanbuf object. Member functionsin
the st r eanmbuf classcall the over f | owpublic virtual member function when the put
areaisfull. Theover f | owpublic virtual member function attempts to grow the put area
so that writing may continue.

Theover f | owpublic virtual member function performs the following steps:

1. If dynamic allocation is not being used, the put area cannot be extended, so the
over f | owpublic virtual member function fails.

2. If dynamic allocation is being used, a new buffer is allocated using the
doal | ocat e member function. It handles copying the contents of the old buffer
to the new buffer and discarding the old buffer.

3. If the ch parameter isnot ECF, it is added to the end of the extended put area and
the put pointer is advanced.

Results: Theover f | owpublic virtual member function returns __NOT_ECF when it successfully
extends the put area, otherwise ECF is returned.

See Also: st reanbuf:: overfl ow
strstreanbuf::underfl ow

868 Input/Output Classes

strstreambuf::seekoff()

Synopsis:

Semantics:

Results:

#i nclude <strstrea. h>

public:

virtual streanpos strstreanbuf::seekoff(streanoff offset,
ios::seekdir dir,

i 0s::opennode node);

Theseekof f public virtual member function positions the get pointer and/or put pointer to
the specified position in thereserve area. If the get pointer is moved, it ismoved to a
position relative to the start of the reserve area (which is also the start of the get area). If a
position is specified that is beyond the end of the get area but isin the put area, the get area
is extended to include the put area. If the put pointer is moved, it is moved to a position
relative to the start of the put area, not relative to the start of the reserve area.

The seekof f public virtual member function seeks offset bytes from the position specified
by the dir parameter.

The mode parameter may bei 0s::in,io0s::out,orios::in|ios::out andshould
be interpreted as follows, provided the interpretation is meaningful:

ios::in the get pointer should be moved.
i 0s::out the put pointer should be moved.
ios::in|ios::out both the get pointer and the put pointer should be moved.

If mode has any other value, the seekof f public virtual member function fails.
i 0s::in|ios::out isnotvalidif thedir parameter isi os: : cur.

Thedir parameter may bei 0s: : beg,i os:: cur,orios:: end andisinterpretedin
conjunction with the offset parameter as follows:

i 0s:: beg theoffsetisrelativeto the start and should be a positive value.

i 0s::cur theoffsetisrelativeto the current position and may be positive
(seek towards end) or negative (seek towards start).

i 0s::end theoffsetisrelativeto the end and should be a negative value.

If the dir parameter has any other value, or the offset parameter does not have an appropriate
sign, the seekof f public virtual member function fails.

Theseekof f public virtual member function returns the new position in the file on success,

otherwise EOF isreturned. If bothor i os: :in|ios::out arespecified and the dir
parameter isi 0s: : cur thereturned position refers to the put pointer.

Input/Output Classes 869

strstreambuf::setbuf()

Synopsis: #i ncl ude <strstrea. h>
public:
virtual streanbuf *strstreanbuf::setbuf(char *, int size);

Semantics: Theset buf public virtual member function is used to control the size of the allocations
whenthe st r st r eanmbuf object isusing dynamic allocation. The first parameter is
ignored. The next time an allocation is required, at least the number of characters specified
in the size parameter is alocated. If the specified size is not sufficient, the allocation reverts
to its default behavior, which is to extend the buffer by DEFAULT _MAI NBUF_SI ZE, which
is 512 characters.

If aprogram is going to write alarge number of charactersto the st r st r eanbuf object, it
should call the set buf public virtual member function to indicate the size of the next
allocation, to prevent multiple allocations as the buffer gets larger.

Results: The set buf public virtual member function returns a pointer to the st r st r eanbuf
object.

SeeAlso: strstreanbuf::all oc_size_ increnent, doall ocate

870 Input/Output Classes

strstreambuf::str()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <strstrea. h>
public:
char *strstreanbuf::str();

The st r public member function freezesthe st r st r eanbuf object and returns a pointer
tothereservearea. Thispointer remainsvalid after the st r st r eanbuf objectis
destroyed provided the st r st r eanbuf object remains frozen, since the destructor does not
freethereserve areaif it isfrozen.

The returned pointer may be NULL if the st r st r eanbuf object is using dynamic
allocation but has not yet had anything written to it.

If thestr st reambuf object isnot using dynamic allocation, the pointer returned by the
st r public member function is the same buffer pointer provided to the constructor. For a
st rstreanbuf object using dynamic allocation, the pointer points to adynamically
allocated area.

Note that the reserve area does not necessarily end with anull character. If the pointer
returned by the st r public member function isto be interpreted asa C string, it isthe
program’s responsibility to ensure that the null character is present.

The st r public member function returns a pointer to the reserve area and freezes the
st r st reanbuf object.

strstreambuf::freeze

Input/Output Classes 871

strstreambuf::strstreambuf()

Synopsis: #i ncl ude <strstrea. h>
public:
strstreanbuf::strstreanbuf();

Semantics: Thisform of the public st r st r eanbuf constructor creates an empty st r st r eanbuf
object that uses dynamic alocation. No reserve area is allocated to start. Whenever
characters are written to extend the st r st r eanbuf object, thereserve area is reallocated
and copied asrequired. Thesize of alocation is determined by the st r st r eanbuf object
unlesstheset buf or al | oc_si ze_i ncr ement member functions are called to change
the allocation size. The default allocation size is determined by the constant
DEFAULT_MAI NBUF_SI ZE, which is512.

Results: Thisform of the public st r st r eanbuf constructor createsa st r st r eanbuf object.

See Also: strstreanbuf:: doal | ocat e, ~strstreanbuf

872 Input/Output Classes

strstreambuf::strstreambuf()

Synopsis:

Semantics:

Results:

See Also:

#i nclude <strstrea. h>
public:
strstreanbuf::strstreanbuf(int alloc_size);

Thisform of the public st r st r eanbuf constructor creates an empty st r st r eanbuf
object that uses dynamic alocation. No buffer isalocated to start. Whenever characters are
written to extend the st r st r eanbuf object, the reserve area isreallocated and copied as
required. The size of the first alocation is determined by the alloc_size parameter, unless
changed by acall tothe set buf or al | oc_si ze_i ncr ement member functions.

Note that the alloc_size parameter isthe starting reserve area size. Whenthereserve areais
reallocated, the st r st r eanbuf object uses DEFAULT_MAI NBUF_SI ZE to increase the
reserve area size, unlessthe set buf oral | oc_si ze_i ncr enent member functions
have been called to specify anew allocation size.

Thisform of the public st r st r eanbuf constructor createsa st r st r eanbuf object.

strstreanbuf::all oc_size_increment, doal | ocat e, set buf,
~str st r eanbuf

Input/Output Classes 873

strstreambuf::strstreambuf()

Synopsis: #i ncl ude <strstrea. h>
public:
strstreanbuf::strstreanbuf(void * (*alloc_fn)(long),
void (*free_fn)(void *));

Semantics. Thisform of the public st r st r eanbuf constructor creates an empty st r st r eanbuf
object that uses dynamic allocation. No buffer is allocated to start. Whenever characters are
written to extend the st r st r eanbuf object, the reserve area isreallocated and copied as
required, using the specified alloc_fn and free_fn functions. The size of alocation is
determined by the classunlessthe set buf or al | oc_si ze_i ncr ement member
functions are called to change the alocation size. The default allocation size is determined
by the constant DEFAULT _MAI NBUF_SI ZE, which is 512.

When anew reserve area is allocated, the function specified by the alloc_fn parameter is
caledwithal ong i nt eger valueindicating the number of bytesto alocate. If alloc_fn
isNULL, the oper at or newintrinsic function isused. Likewise, whenthereserveareais
freed, the function specified by the free_fn parameter is called with the pointer returned by
the alloc_fn function asthe parameter. If free fnis NULL, the oper at or del ete
intrinsic function is used.

Results: Thisform of the public st r st r eanbuf constructor createsa st r st r eanbuf object.

SeeAlso: strstreanbuf::alloc_size_increnent, doal | ocat e, set buf,
~st r st r eanbuf

874 Input/Output Classes

strstreambuf::strstreambuf()

Synopsis:

Semantics:

Results:

#i ncl ude <strstrea. h>

public:
strstreanbuf::strstreanbuf(char *str,
int len,

char *pstart = NULL);
strstreanbuf::strstreanbuf(signed char *str,
int |en,

signed char *pstart = NULL);
strstreanmbuf::strstreanbuf(unsigned char *str,
int len,

unsi gned char *pstart = NULL);

Thisform of the public st r st r eanbuf constructor createsa st r st r eanbuf object that
does not use dynamic alocation. The st r st reanbuf object issaid to be using static
alocation. The str and len parameters specify the bounds of the reserve area.
The str, len and pstart parameters are interpreted as follows:

1. Thebuffer starts at str.

2. If lenis positive, the buffer islen characters long.

3. If leniszero, str isapointer to a C string which is terminated by a null character,
and the length of the buffer is the length of the string.

4. If lenisnegative, the buffer isunbounded. Thislast form should be used with
extreme caution, since no buffer istruly unlimited in size and it would be easy to
write beyond the available space.

5. If the pstart parameter is NULL, the st r st r eanbuf object isread-only.

6. Otherwise, pstart divides the buffer into two regions. The get area starts at str
and ends at pstart-1. The put area starts at pstart and goes to the end of the
buffer.

If the get area is exhausted and characters have been written to the put area, the get areais
extended to include the put area.

Note that the get pointer and put pointer do not necessarily point at the same position in the
reserve area, so aread followed by awrite does not imply that the write stores following the
last character read. The get pointer is positioned following the last read operation, and the
put pointer is positioned following the last write operation, unlessthe seekof f member
function has been used to reposition the pointer(s).

Thisform of the public st r st r eanbuf constructor createsa st r st r eanbuf object.

Input/Output Classes 875

strstreambuf::strstreambuf()

See Also: ~str st r eanbuf

876 Input/Output Classes

strstreambuf::~strstreambuf()

Synopsis:

Semantics:

Results:

See Also:

#i nclude <strstrea. h>
public:
st rstreanbuf:: ~strstreanbuf();

The public ~st r st r eanbuf destructor destroysthe st r st r eanmbuf object after
discarding thereserve area. Thereserve areaisdiscarded only if the st r st r eanbuf
object is using dynamic allocation and is not frozen. Thereserve area isfreed using the free
function specified by the form of the constructor that allows specification of the allocate and
free functions, or using the oper at or del et e intrinsic function. If the

st r st reanmbuf object isfrozen or using static allocation, the user of the st r st r eanbuf
object must have a pointer to the reserve area and is responsible for freeing it. Thecall to
the public ~st r st r eanbuf destructor isinserted implicitly by the compiler at the point
wherethe st r st r eanbuf object goes out of scope.

Thest r st reanbuf object isdestroyed.

st rstreambuf

Input/Output Classes 877

strstreambuf::sync()

Synopsis: #i ncl ude <strstrea. h>
public:
virtual int strstreanbuf::sync();

Semantics: Thesync public virtual member function does nothing because there is no external device
with which to synchronize.

Results: The sync public virtual member function returns __NOT _EOF.

878 Input/Output Classes

strstreambuf::underflow()

Synopsis:

Semantics:

Results:

See Also:

#i nclude <strstrea. h>
public:
virtual int strstreanbuf::underflow();

Theunder f | ow public virtual member function provides the input communication between
the st r eambuf member functions and the st r st r eanbuf object. Member functionsin
thest r eanmbuf classcall the under f | ow public virtual member function when the get
areaisempty.

If there is a non-empty put area present following the get area, the get area is extended to
include the put area, allowing the input operation to continue using the put area. Otherwise
the get area cannot be extended.

Theunder f | owpublic virtual member function returns the first available character in the
get area on successful extension, otherwise EOF is returned.

st reanbuf : : underfl ow
strstreanbuf::overfl ow

Input/Output Classes 879

strstreambuf::underflow()

880 Input/Output Classes

19 String Class

This classis used to store arbitrarily long sequences of charactersin memory. Objects of this
type may be concatenated, substringed, compared and searched without the need for memory
management by the user. Unlike a C string, this abject has no delimiting character, so any
character in the collating sequence, or character set, may be stored in an object.

String Class 881

String

Declared: string. hpp

The St ri ng classisused to store arbitrarily long sequences of charactersin memory.
Objects of thistype may be concatenated, substringed, compared and searched without the
need for memory management by the user. Unlikea C string, a St r i ng object has no
delimiting character, so any character in the collating sequence, or character set, may be
storedina St ri ng object.

Public Functions
The following constructors and destructors are declared:

String();

String(size_t, capacity);
String(String const & size_t
String(char const *, size_t =
String(char, sizet =1);
~String();

= 0, size_t = NPCS);
NPCS) ;

The following member functions are declared:

operator char const *();

operator char() const;

String &operator =(String const &);
String &operator =(char const *);

String &operator +=(String const &);
String &operator +=(char const *);

String operator ()(size_t, size_t) const;
char &operator ()(size t);

char const &operator [](size_t) const;
char &operator [](size_t);

int operator !() const;

size_t length() const;

char const &get _at(size_t) const;
void put _at(size_t, char);

int mtch(String const &) const;
int match(char const *) const;

int index(String const & size.t =
int index(char const *, sizet =20
String upper() const;

String | ower() const;

int valid() const;

int alloc_nult_size() const;

int alloc_nult_size(int);

0) const;
) const;

The following friend functions are declared:

882 String Class

String

friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend
friend

i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
i nt
String
String
String
String
String

oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or
oper at or

+(
+(
*+(
+(
+(

String
String
char
String
char
String
String
char
String
char
String
String
char
String
char
String
String
char
String
char
String
String
char
String
char
String
String
char
String
char

char

char

const
const
const
const

const
const
const
const

const
const
const
const

const
const
const
const

const
const
const
const

const
const
const
const

String
String

const
String

int valid(String const &);

P AR o fRp o R o fp ot @ R R ¥ oo

String
char
String
char
String
String
char
String
char
String
String
char
String
char
String
String
char
String
char
String
String
char
String
char
String
String
char
String
char
String
String
char
String
char
String

Thefollowing I/O Stream inserter and extractor functions are declared:

friend istream &operator >>(

const
const
const

const
const
const
const

const
const
const
const

const
const
const
const

const
const
const
const

const
const
const
const

const
const
const
const

const

istream & String &);

R R0 *RoR R *RoR R YRR R ¥R R ¥R R R R *FRo

friend ostream &operator <<(ostream & String const &);

String Class

883

String::alloc_mult_size()

Synopsis:

Semantics:

Results:

#i ncl ude <string. hpp>

public:

int String::alloc_nult_size() const;

int String::alloc_nult_size(int mult);

Theal | oc_mnul t _si ze public member function is used to query and/or change the
allocation multiple size.

Thefirst form of the al | oc _nul t _si ze public member function queries the current
Setting.

The second form of the al | oc _mul t _si ze public member function sets the valueto a
multiple of 8 based on the mult parameter. The value of mult is rounded down to a multiple
of 8 characters. If mult islessthan 8, the new multiple sizeis 1 and allocation sizes are
exact.

The scheme used to storea St r i ng object allocates the memory for the charactersin
multiples of some size. By default, thissizeis 8 characters. A St ri ng object with alength
of 10 actually has 16 characters of storage allocated for it. Concatenating more characterson
theend of the St r i ng object only allocates a new storage block if more than 6 (16-10)
characters are appended. This scheme tries to find a balance between reallocating frequently
(multiples of asmall value) and creating alarge amount of unused space (multiples of alarge
value).

Theal | oc_mul t _si ze public member function returns the previous allocation multiple
size.

884 String Class

String::get_at()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <string. hpp>
public:
char const &String::get_at(size_t pos);

Theget _at public member function creates a const reference to the character at offset pos
withinthe St r i ng object. Thisreference may not be used to modify that character. The
first character of a St ri ng object is at position zero.

If posis greater than or equal to the length of the St ri ng object, and the resulting reference
is used, the behavior is undefined.

Thereferenceis associated with the St r i ng object, and therefore has meaning only as long
asthe St ri ng object isnot modified (or destroyed). If the St ri ng object has been
modified and an old reference is used, the behavior is undefined.

Theget _at public member function returns a const reference to a character.

String::put_at,operator [],operator ()

String Class 885

String::index()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <string. hpp>

public:

int String::index(String const &str, size_t pos = 0) const;
int String::index(char const *pch, size_t pos = 0) const;

Thei ndex public member function computes the offset at which a sequence of charactersin
the St ri ng object is found.

Thefirst form searchesthe St r i ng aobject for the contents of the str St r i ng object.

The second form searchesthe St r i ng object for the sequence of characters pointed at by
pch.

If posis specified, the search begins at that offset from the start of the St ri ng object.
Otherwise, the search begins at offset zero (the first character).

Thei ndex public member function treats upper and lower case |etters as not equal.

Thei ndex public member function returns the offset at which the sequence of charactersis
found. If the substring is not found, -1 is returned.

String::lower,operator != operator == match,upper

886 String Class

String::length()

Synopsis: #i ncl ude <string. hpp>
public:
size_t String::length() const;

Semantics: Thel engt h public member function computes the number of characters contained in the
Stri ng object.

Results: Thel engt h public member function returns the number of characters contained in the
Stri ng object.

String Class 887

String::lower()

Synopsis: #i ncl ude <string. hpp>
public:
String String::lower() const;

Semantics: Thel ower public member function createsa St r i ng object whose value is the same asthe
original abject’ s value, except that all upper-case |etters have been converted to lower-case.

Results: The | ower public member function returns alower-case St ri ng object.

SeeAlso: String:: upper

888 String Class

String::match()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <string. hpp>

public:

int String::mtch(String const &str) const;
int String::mtch(char const *pch) const;

The mat ch public member function compares two character sequences to find the offset
where they differ.

Thefirst form comparesthe St ri ng object to the str St ri ng object.
The second form comparesthe St r i ng object to the pch C string.

Thefirst character is at offset zero. The nat ch public member function treats upper and
lower case |etters as not equal.

The mat ch public member function returns the offset at which the two character sequences
differ. If the character sequences are equal, -1 is returned.

String::index,| ower,operator !=, operator ==, upper

String Class 889

String::operator ()

Synopsis. #i ncl ude <string. hpp>
public:
int String::operator !() const;
Semantics: Theoperat or ! public member function tests the validity of the St ri ng object.

Results: Theoperat or ! public member function returns a non-zero valueif the St ri ng object
isinvalid, otherwise zero is returned.

SeeAlso: String::valid,valid

890 String Class

String operator !=()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <string. hpp>

public:

friend int operator !=(String const & ft,
String const &ht);

friend int operator !=(String const & ft,
char const *rht);

friend int operator !=(char const *I|ft,
String const &ht);

friend int operator !=(String const & ft,
char rht);

friend int operator !=(char Ift,

String const &ht);

Theoper at or ! = function compares two sequences of charactersin terms of an
inequality relationship.

A Stri ng object isdifferent from another St ri ng object if the lengths are different or
they contain different sequences of characters. A St ri ng object and a C string are different
if their lengths are different or they contain a different sequence of characters. A C stringis
terminated by anull character. A St ri ng object and acharacter are different if the

St ri ng object does not contain only the character. Upper-case and lower-case characters
are considered different.

Theoper at or ! = function returns a non-zero value if the lengths or sequences of
charactersin the Ift and rht parameter are different, otherwise zero is returned.

String::operator == operator <,operator <=, operator >,
operator >=

String Class 891

String::operator ()()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <string. hpp>
public:
char &String::operator ()(size_t pos);

Theoper at or () public member function creates a reference to the character at offset
poswithin the St r i ng object. Thisreference may be used to modify that character. The
first character of a St ri ng object is at position zero.

If posis greater than or equal to the length of the St ri ng object, and the resulting reference
is used, the behavior is undefined.

If the reference is used to modify other characters withinthe St ri ng object, the behavior is
undefined.

The reference is associated with the St r i ng object, and therefore has meaning only aslong
asthe St ri ng object is not modified (or destroyed). If the St ri ng object has been
modified and an old reference is used, the behavior is undefined.

Theoperat or () public member function returns areference to a character.

String::operator [],operator char,operator char const *

892 String Class

String::operator ()()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <string. hpp>
public:
String String::operator ()(size_t pos, size_t len) const;

Thisform of the oper at or () public member function extracts a sub-sequence of
charactersfrom the St ri ng object. A new St ri ng object is created that contains the
sub-sequence of characters. The sub-sequence begins at offset pos within the St ri ng
object and continues for len characters. Thefirst character of a St ri ng object isat position
zero.

If posis greater than or equal to the length of the St ri ng object, the result is empty.

If len is such that pos + |en exceeds the length of the object, the result is the sub-sequence of
charactersfrom the St r i ng object starting at offset pos and running to the end of the

St ri ng object.

Theoper at or () public member function returnsa St ri ng object.

String::operator [],operator char,operator char const *

String Class 893

String operator +()

Synopsis. #i ncl ude <string. hpp>
public:
friend String operator +(String & ft,
String const &ht);
friend String operator +(String & ft,
char const *rht);
friend String operator +(char const *Ift,
String const &ht);
friend String operator +(String & ft,
char rht);
friend String operator +(char Ift,
String const &ht);

Semantics: Theoper at or + function concatenates two sequences of charactersintoanew St ri ng
object. Thenew St ri ng object contains the sequence of characters from the Ift parameter
followed by the sequence of characters from the rht parameter.

A NULL pointer to a C string istreated as a pointer to an empty C string.

Results: Theoper at or + function returnsanew St ri ng object that contains the characters from
the Ift parameter followed by the characters from the rht parameter.

SeeAlso: String::operator +=

894 String Class

String::operator +=()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <string. hpp>

public:

String &String::operator +=(String const &str);
String &String::operator +=(char const *pch);

Theoper at or += public member function appends the contents of the parameter to the
end of the St r i ng object.

Thefirst form of the oper at or += public member function appends the contents of the str
St ri ng object to the St r i ng object.

The second form appends the null-terminated sequence of characters stored at pch to the
St ri ng object. If the pch parameter is NULL, nothing is appended.

Theoper at or += public member function returns areference to the St r i ng object that
was the target of the assignment.

String::operator =

String Class 895

String operator <()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <string. hpp>

public:

friend int operator <(String const & ft, String const &ht);
friend int operator <(String const & ft, char const *rht);
friend int operator <(char const *Ift, String const &ht);
friend int operator <(String const & ft, char rht);

friend int operator <(char Ift, String const & ht);

Theoper at or < function compares two sequences of charactersin terms of aless-than
relationship.

Ift isless-than rht if Ift if the characters of Ift occur before the characters of rht in the
collating sequence. Upper-case and lower-case characters are considered different.

Theoper at or < function returns anon-zero value if the Ift sequence of charactersisless
than the rht sequence, otherwise zero is returned.

String::operator != operator == operator <= operator >,
operator >=

896 String Class

String operator <<()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <string. hpp>

public:

friend ostream &operator <<(ostream &strm
String const &str);

Theoper at or << function is used to write the sequence of charactersinthestr Stri ng
object to the strm ost r eamobject. Like C strings, the value of the str St ri ng object is
written to strm without the addition of any characters. No special processing occurs for any
charactersinthe St r i ng object that have special meaning for the strm object, such as
carriage-returns.

Theoper at or << function returns areference to the strm parameter.

ostream

String Class 897

String operator <=()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <string. hpp>

public:

friend int operator <=(String const & ft,
String const &ht);

friend int operator <=(String const & ft,
char const *rht);

friend int operator <=(char const *|ft,
String const &ht);

friend int operator <=(String const & ft,
char rht);

friend int operator <=(char Ift,

String const &ht);

Theoper at or <= function compares two sequences of charactersin terms of aless-than
or equal relationship.

Ift isless-than or equal to rht if the characters of Ift are equal to or occur before the characters
of rht in the collating sequence. Upper-case and lower-case characters are considered
different.

Theoper at or <= function returns a non-zero value if the Ift sequence of charactersisless
than or equal to the rht sequence, otherwise zero is returned.

String::operator !=, operator == operator <,operator >,
operator >=

898 String Class

String::operator =()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <string. hpp>

public:

String &String::operator =(String const &str);
String &String::operator =(char const *pch);

Theoper at or = public member function sets the contents of the St ri ng object to be the
same as the parameter.

Thefirst form of the oper at or = public member function sets the value of the St ri ng
object to be the same as the value of the str St r i ng object.

The second form sets the value of the St ri ng object to the null-terminated sequence of
characters stored at pch. If the pch parameter is NULL, the St r i ng object is empty.

Theoper at or = public member function returns areferenceto the St ri ng object that
was the target of the assignment.

String::operator +=,String

String Class 899

String operator ==()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <string. hpp>

public:

friend int operator ==(String const & ft,
String const &ht);

friend int operator ==(String const & ft,
char const *rht);

friend int operator ==(char const *|ft,
String const &ht);

friend int operator ==(String const & ft,
char rht);

friend int operator ==(char Ift,

String const & ht);

Theoper at or == function compares two sequences of charactersin terms of an equality
relationship.

A String objectisequal to another St ri ng object if they have the same length and they
contain the same sequence of characters. A St ri ng object and a C string are equal if their
lengths are the same and they contain the same sequence of characters. The C string is
terminated by anull character. A St ri ng object and acharacter are equal if the St ri ng
object contains only that character. Upper-case and lower-case characters are considered
different.

Theoper at or == function returns a non-zero value if the lengths and sequences of
charactersin the Ift and rht parameter are identical, otherwise zero is returned.

String::operator != operator <, operator <= operator >,
operator >=

900 String Class

String operator >()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <string. hpp>

public:

friend int operator >(String const & ft, String const &ht);
friend int operator >(String const & ft, char const *rht);
friend int operator >(char const *Ift, String const &ht);
friend int operator >(String const & ft, char rht);

friend int operator >(char Ift, String const & ht);

Theoper at or > function compares two sequences of charactersin terms of a
greater-than relationship.

Ift is greater-than rht if the characters of Ift occur after the characters of rht in the collating
sequence. Upper-case and lower-case characters are considered different.

Theoper at or > function returns anon-zero value if the Ift sequence of charactersis
greater than the rht sequence, otherwise zero is returned.

String::operator != operator == operator <, operator <=,
operator >=

String Class 901

String operator >=()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <string. hpp>

public:

friend int operator >=(String const & ft,
String const &ht);

friend int operator >=(String const & ft,
char const *rht);

friend int operator >=(char const *|ft,
String const &ht);

friend int operator >=(String const & ft,
char rht);

friend int operator >=(char |ft,

String const &ht);

Theoper at or >= function compares two sequences of charactersin termsof a
greater-than or equal relationship.

Ift is greater-than or equal to rht if the characters of Ift are equal to or occur after the
characters of rht in the collating sequence. Upper-case and lower-case characters are
considered different.

Theoper at or >= function returns a non-zero value if the Ift sequence of charactersis
greater than or equal to the rht sequence, otherwise zero is returned.

String::operator !=, operator == operator <,operator <=,
operator >

902 String Class

String operator >>()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <string. hpp>
public:
friend i stream &perator >>(istream&strm String &str);

Theoper at or >> function is used to read a sequence of characters from the strm

i st reamobject into thestr St ri ng object. Like C strings, the gathering of characters for
astr St ri ng object ends at the first whitespace encountered, so that the last character
placed in str is the character before the whitespace.

Theoper at or >> function returns areference to the strm parameter.

i stream

String Class 903

String::operator []()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <string. hpp>

public:

char const &String::operator [](size_t pos) const;
char &String::operator [](size_t pos);

Theoperat or [] public member function creates either a const or a non-const reference
to the character at offset pos within the St r i ng object. The non-const reference may be
used to modify that character. Thefirst character of a St ri ng object is at position zero.

If posisgreater than or equal to the length of the St r i ng object, and the resulting reference
is used, the behavior is undefined.

If the non-const reference is used to modify other characters within the St ri ng object, the
behavior is undefined.

Thereferenceis associated with the St r i ng object, and therefore has meaning only as long
asthe St ri ng object is not modified (or destroyed). If the St ri ng object has been
modified and an old reference is used, the behavior is undefined.

Theoperator [] public member function returns either a const or a non-const reference
to a character.

String::operator (), operator char,operator char const *

904 String Class

String::operator char()

Synopsis:

Semantics:

Results:

See Also:

#i ncl ude <string. hpp>
public:
String::operator char();

Theoper at or char public member function convertsa St r i ng object into the first
character it contains. If the St ri ng object is empty, the result isthe null character.

Theoper at or char public member function returns the first character contained in the
St ri ng object. If the St ri ng object is empty, the null character is returned.

String::operator (),operator [],operator char const *

String Class 905

String::operator char const *()

Synopsis. #i ncl ude <string. hpp>
public:
String::operator char const *();

Semantics. Theoper at or char const * public member function convertsa St ri ng object into
a C string containing the same length and sequence of characters, terminated by a null
character. If the St ri ng object contains a null character the resulting C string is terminated
by that null character.

The returned pointer is associated with the St r i ng object, and therefore has meaning only
aslong asthe St r i ng object is not modified. If theintention isto be ableto refer tothe C
string after the St r i ng object has been modified, a copy of the string should be made,
perhaps by using the C library st r dup function.

The returned pointer is a pointer to a constant C string. If the pointer is used in some way to
modify the C string, the behavior is undefined.

Results: Theoper at or char const * public member function returns a pointer to a
null-terminated constant C string that contains the same charactersasthe St ri ng object.

SeeAlso: String::operator (),operator [],operator char

906 String Class

String::put_at()

Synopsis: #i ncl ude <string. hpp>
public:
void String::put_at(size_t pos, char chr);

Semantics: Theput _at public member function modifies the character at offset pos within the
St ri ng object. The character at the specified offset is set to the value of chr. If posis
greater than the number of characterswithin the St ri ng object, chr is appended to the
Stri ng object.

Results: The put _at public member function has no return value.

SeeAlso: String::get_at,operator [],operator (),operator += operator +

String Class 907

String::String()

Synopsis: #i ncl ude <string. hpp>
public:
String::String();

Semantics: Thisform of the public St ri ng constructor creates adefault St r i ng object containing no
characters. The created St r i ng object has length zero.

Results: Thisform of the public St ri ng constructor producesa St r i ng object.

SeeAlso: String::operator =, operator +=, ~String

908 String Class

String::String()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <string. hpp>
public:
String::String(size_t size, String::capacity cap);

Thisform of the public St r i ng constructor createsa St r i ng object. The function
constructsa St r i ng object of length sizeif cap is equal to the enumerated default_size.
The function reserves size bytes of memory and sets the length of the St ri ng object to be
zero if cap isequal to the enumerated reserve.

Thisform of the public St ri ng constructor producesa St ri ng object of size size.

String::operator = ~String

String Class 909

String::String()

Synopsis. #i ncl ude <string. hpp>
public:
String::String(String const &str,
size_t pos
size_t num

NPCS) ;

Semantics. Thisform of the public St ri ng constructor createsa St r i ng object which containsa
sub-string of the str parameter. The sub-string starts at position pos within str and continues
for num characters or until the end of the str parameter, whichever comes first.

Results: Thisform of the public St r i ng constructor produces a sub-string or duplicate of the str
parameter.

SeeAlso: String::operator = operator (),operator [],~String

910 String Class

String::String()

Synopsis:

Semantics:

Results:

See Also;

#i ncl ude <string. hpp>
public:
String::String(char const *pch, size_t num= NPCS);

Thisform of the public St ri ng constructor createsa St ri ng object from aC string. The
St ri ng object contains the sequence of characterslocated at the pch parameter. Characters
are included up to num or the end of the C string pointed at by pch. Note that C strings are
terminated by a null character and that the value of the created St ri ng object does not
contain that character, nor any following it.

Thisform of the public St r i ng constructor producesa St r i ng object of at most length n
containing the characters in the C string starting at the pch parameter.

String::operator = operator char const *,operator (),
operator [],~String

String Class 911

String::String()

Synopsis: #i ncl ude <string. hpp>
public:
String::String(char ch, size_t rep =1);

Semantics: Thisform of the public St ri ng constructor createsa St r i ng object containing rep copies
of the ch parameter.

Results: Thisform of the public St ri ng constructor producesa St r i ng object of length rep
containing only the character specified by the ch parameter.

SeeAlso: String::operator =, operator char,~String

912 String Class

String::~String()

Synopsis. #i ncl ude <string. hpp>
public:
String::~String();
Semantics: The public ~St r i ng destructor destroysthe St ri ng object. The call to the public
~St ri ng destructor isinserted implicitly by the compiler at the point wherethe St ri ng
object goes out of scope.
Results: The St ri ng object is destroyed.

SeeAlso: String

String Class 913

String::upper()

Synopsis. #i ncl ude <string. hpp>
public:

String String::upper() const;

Semantics: Theupper public member function createsanew St ri ng object whose value is the same
astheorigina St ri ng object, except that all lower-case |etters have been converted to
upper-case.

Results: The upper public member function returns a new upper-case St ri ng object.

SeeAlso: String::|ower

914 String Class

String valid()

Synopsis. #i ncl ude <string. hpp>

public:

friend int valid(String const &str);
Semantics: Theval i d function teststhe validity of the str St ri ng object.

Results: Theval i d function returns anon-zero value if the str St ri ng object isvalid, otherwise
zero isreturned.

SeeAlso: String::operator !,valid

String Class 915

String::valid()

Synopsis. #i ncl ude <string. hpp>
public:
int String::valid() const;
Semantics: Theval i d public member function tests the validity of the St ri ng object.

Results: Theval i d public member function returns a non-zero valueif the St r i ng object isvalid,
otherwise zero is returned.

SeeAlso: String::operator !,valid

916 String Class

Index

__NOT_EOF 5

abs, related function
Complex 17,19

acos, related function
Complex 17,20

acosh, related function
Complex 17,21

adjustfield, member enumeration
ios 679

al_fine, member enumeration
WCExcept 70
WClterExcept 76

alloc_mult_size, member function
String 882, 884

alloc_size increment, member function
strstreambuf 863, 865

allocate, member function
streambuf 809, 811

allocator
function 263, 267, 291, 295, 427, 527

app, member enumeration
ios 690

append, member enumeration
ios 690

append, member function
WClsvConstDListIter<Type> 314
W(ClsvConstSListlter<Type> 314
WClsvDList<Type> 237, 245
WClsvDListlter<Type> 331, 339
WClsvSList<Type> 237, 245
WClsvSListlter<Type> 331, 339
WCPtrConstDListIter<Type> 350

WCPtrConstSListlter<Type> 350
WCPtrDList<Type> 260, 270
WCPtrDListlter<Type> 367, 375
WCPtrOrderedVector<Type> 538, 545
WCPtrSList<Type> 260, 270
WCPtrSListlter<Type> 367, 375
WCPtrSortedV ector<Type> 538, 545
WCVaConstDListlter<Type> 386
WCVaConstSListIter<Type> 386
WCVaDList<Type> 287, 298
WCValDListIter<Type> 403, 412
WCValOrderedVector<Type> 582, 589
WCValSList<Type> 287, 298
WCValSListlter<Type> 403, 412
WCVa SortedVector<Type> 582, 589

arg, related function
Complex 17,22

asin, related function
Complex 17, 23

asinh, related function
Complex 17,24

atan, related function
Complex 17,25

atanh, related function
Complex 17, 26

ate, member enumeration
ios 690

atend, member enumeration
ios 690

attach, member function
filebuf 625-626
fstreambase 649-650

bad, member function
ios 669, 671

badbit, member enumeration
ios 688

base, member function

917

Index

streambuf 809, 812

basefield, member enumeration
ios 679

beg, member enumeration
ios 698

binary, member enumeration
ios 690

bitalloc, member function
ios 670, 672

bitHash, member function
WCPtrHashDict<Key,Vaue> 85, 90
WCPtrHashSet<Type> 108, 117
WCPtrHashTable<Type> 108, 117
WCValHashDict<Key,Value> 134, 139
WCValHashSet<Type> 156, 165
WCVaHashTable<Type> 156, 165

blen, member function
streambuf 809, 813

buckets, member function
WCPtrHashDict<Key,Vaue> 85, 91
WCPtrHashSet<Type> 108, 118
WCPtrHashTable<Type> 108, 118
WCValHashDict<Key,Vaue> 134, 140
WCValHashSet<Type> 156, 166
WCVaHashTable<Type> 156, 166

cerr 7

check_all, member enumeration
WCExcept 70
WClterExcept 76

check_none, member enumeration
WCExcept 70
WClterExcept 76

cin 7

clear, member function
ios 669, 673
WClsvDList<Type> 237, 246
WClsvSList<Type> 237, 246

918

WCPtrDList<Type> 260, 271
WCPtrHashDict<Key,Vaue> 85, 92
WCPtrHashSet<Type> 108, 119
WCPtrHashTable<Type> 108, 119
WCPtrOrderedV ector<Type> 537, 546
WCPtrSkipList<Type> 459, 468
WCPtrSkipListDict<Key,Value> 439, 444
WCPtrSkipListSet<Type> 459, 468
WCPHrSList<Type> 260, 271
WCPtrSortedV ector<Type> 537, 546
WCPtrVector<Type> 568, 573
WCQueue<Type,FType> 424, 429
WCStack<Type,FType> 524, 529
WCValDList<Type> 287, 299
WCValHashDict<Key,Value> 134, 141
WCVaHashSet<Type> 156, 167
WCValHashTable<Type> 156, 167
WCVa OrderedVector<Type> 581, 590
WCValSkipList<Type> 501, 510
WCValSkipListDict<Key,Value> 482, 487
WCValSkipListSet<Type> 501, 510
WCValSList<Type> 287, 299
WCValSortedVector<Type> 581, 590
WCValVector<Type> 612, 617

clearAndDestroy, member function

WCIsvDList<Type> 237, 247
WClIsvSList<Type> 237, 247
WCPtrDList<Type> 260, 272
WCPtrHashDict<Key,Vaue> 85, 93
WCPtrHashSet<Type> 108, 120
WCPtrHashTable<Type> 108, 120
WCPtrOrderedVector<Type> 537, 547
WCPtrSkipList<Type> 459, 469
WCPtrSkipListDict<Key,Value> 439, 445
WCPtrSkipListSet<Type> 459, 469
WCPtrSList<Type> 260, 272
WCPtrSortedV ector<Type> 537, 547
WCPtrVector<Type> 568, 574
WCVaDList<Type> 287, 300
WCValSList<Type> 287, 300

clog 7
close, member function

filebuf 625, 627
fstreambase 649, 651

Index

common types 5

Complex class 15

Complex related functions
abs 17, 19
acos 17,20
acosh 17,21
arg 17,22
asin 17,23
asinh 17,24
atan 17,25
atanh 17, 26
conj 17,31
cos 17, 32
cosh 17,33
exp 17,34
imag 17, 36

log 17

logl0 17, 38
norm 17, 39

num 37

operator != 17, 40
operator * 17,41
operator + 16-17, 44
operator - 17, 47
operator / 17,49
operator << 16, 51
operator == 17,53
operator >> 16, 54
polar 17, 55

pow 17, 56

real 17,58

sin 17,59

sinh 17, 60

sqrt 17, 61

tan 18, 62

tanh 18, 63

Complex::
Complex::
Complex::
Complex::
Complex::
Complex::
Complex::
Complex::

Complex 16, 27-29
imag 16, 35
operator *= 16, 42
operator + 16, 43
operator += 16, 45
operator - 16, 46
operator -= 16, 48
operator /= 16, 50

Complex::operator = 16, 52
Complex::real 16, 57
Complex::~Complex 16, 30
conj, related function

Complex 17, 31

constructor

Complex 16, 27-29

filebuf 625, 629-631

fstream 642-646

fstreambase 649, 652-655

ifstream 662-666

ios 669, 685-686

iostream 706-709

istream 713, 725-727

istrstream 744-746

ofstream 763-767

ostream 770, 785-787

ostrstream 794-796

stdiobuf 800, 802-803

streambuf 809, 847-848

String 882, 908-912

strstream 853, 855-856

strstreambase 858, 860-861

strstreambuf 863, 872-875

WCDLink 233-234

WCEXxcept 66-67
W(ClsvConstSListlter<Type> 314
WClsvSList<Type> 236-237
WClsvSListlter<Type> 331
WClterExcept 72-73
WCPtrConstSListlter<Type> 350
WCPtrHashDict<Key,Vaue> 86-83
WCPtrHashDictlter<Key,Vaue> 182
WCPtrHashSetlter<Type> 204
WCPtrHashTable<Type> 109-111, 113-115
WCPtrSkipList<Type> 460-462, 464-466
WCPtrSkipListDict<Key,Vaue> 440-442
WCPtrSList<Type> 260
WCPtrSListlter<Type> 367
WCPtrSortedV ector<Type> 539-540, 542-543
WCPtrVector<Type> 568-571
WCQueue<Type,FType> 424, 426-427
WCSLink 284-285

WCStack<Type FType> 524, 526-527

919

Index

WCValConstSListlter<Type> 386
WCValHashDict<Key,Value> 135-137
WCVaHashDictlter<key,Vaue> 193
WCVaHashSetlter<Type> 217

WCValHashTable<Type> 157-159, 161-163

WCVal SkipList<Type> 502-504, 506-508

WCValSkipListDict<Key,Value> 483-485

WCVaSList<Type> 287

WCVaSListlter<Type> 403

WCVa SortedVector<Type> 583-584,
586-587

WCValVector<Type> 611, 613-615

container, member function

W(ClsvConstDListlter<Type> 314, 322
W(ClsvConstSListlter<Type> 314, 322
WClsvDListlter<Type> 331, 340
WClsvSListlter<Type> 331, 340
WCPtrConstDListlter<Type> 350, 358
WCPtrConstSListlter<Type> 350, 358
WCPtrDListlter<Type> 367, 376
WCPtrHashDictlter<Key,Value> 182, 186
WCPtrHashSetlter<Type> 204, 211
WCPtrHashTablelter<Type> 204, 211
WCPtrSListlter<Type> 367, 376
WCVaConstDListlter<Type> 386, 394
WCVaCongtSListlter<Type> 386, 394
WCValDListlter<Type> 403, 413
WCVaHashDictlter<Key,Vaue> 193, 197
WCVaHashSetlter<Type> 217, 224
WCVaHashTablelter<Type> 217, 224
WCValSListlter<Type> 403, 413

contains, member function

WClsvDList<Type> 237, 248
WClsvSList<Type> 237, 248
WCPtrDList<Type> 260, 273
WCPtrHashDict<Key,Value> 85, 94
WCPtrHashSet<Type> 108, 121
WCPtrHashTable<Type> 108, 121
WCPtrOrderedVector<Type> 537, 548
WCPtrSkipList<Type> 459, 470
WCPtrSkipListDict<Key,Vaue> 439, 446
WCPtrSkipListSet<Type> 459, 470
WCPtrSList<Type> 260, 273
WCPtrSortedV ector<Type> 537, 548

920

WCValDList<Type> 287, 301
WCVaHashDict<Key,Vaue> 134, 142
WCVaHashSet<Type> 156, 168
WCVaHashTable<Type> 156, 168
WCVa OrderedVector<Type> 581, 591
WCVa SkipList<Type> 501, 511

WCVaSkipListDict<Key,Value> 482, 488

WCValSkipListSet<Type> 501, 511
WCVaSList<Type> 287, 301
WCVa SortedVector<Type> 581, 591

cos, related function
Complex 17, 32

cosh, related function
Complex 17, 33

cout 7

cur, member enumeration
ios 698

current, member function
W(ClsvConstDListIter<Type> 314, 323
W(ClsvConstSListlter<Type> 314, 323
WClsvDListiter<Type> 331, 341
WOClsvSListlter<Type> 331, 341
WCPtrConstDListIter<Type> 350, 359
WCPtrConstSListlter<Type> 350, 359
WCPtrDListlter<Type> 367, 377
WCPtrHashSetlter<Type> 204, 212
WCPtrHashTablelter<Type> 204, 212
WCPtrSListlter<Type> 367, 377
WCVaConstDListlter<Type> 386, 395
WCVaConstSListIter<Type> 386, 395
WCValDListiter<Type> 403, 414
WCVaHashSetlter<Type> 217, 225
WCValHashTablelter<Type> 217, 225
WCValSListlter<Type> 403, 414

dbp, member function
streambuf 809, 814
dealloctor

function 263, 267, 291, 295, 427, 527
dec, manipulator 748-749
dec, member enumeration
ios 679
destructor
Complex 16, 30
filebuf 625, 632
fstream 642, 647
fstreambase 649, 656
ifstream 662, 667
ios 669, 687
iostream 706, 710
istream 713, 728
istrstream 744, 747
ofstream 763, 768
ostream 770, 788
ostrstream 794, 797
stdiobuf 800, 804
streambuf 809, 849
String 882, 913
strstream 853, 857
strstreambase 858, 862
strstreambuf 863, 877
WCDLink 233, 235
WCEXxcept 66, 68
W(ClsvConstSListlter<Type> 314
WClsvSList<Type> 236-237
WClsvSListlter<Type> 331
WClterExcept 72, 74
WCPtrConstSListlter<Type> 350
WCPtrHashDict<Key,Value> 89
WCPtrHashDictlter<Key,Vaue> 182
WCPtrHashSetlter<Type> 204

WCVaHashDict<Key,Vaue> 138
WCVaHashDictlter<Key,Vaue> 193
WCVaHashSetlter<Type> 217
WCVaHashTable<Type> 160, 164
WCValSkipList<Type> 505, 509
WCVal SkipListDict<Key,Value> 486
WCVaSList<Type> 287
WCVaSListlter<Type> 403
WCVa SortedV ector<Type> 585, 588
WCVaVector<Type> 611, 616
do_sgetn, member function
streambuf 809, 815
do_sputn, member function
streambuf 809, 816
doallocate, member function
streambuf 809, 817
strstreambuf 863, 866

eatwhite, member function
istream 713, 715
eback, member function
streambuf 809, 818
ebuf, member function
streambuf 809, 819
egptr, member function
streambuf 809, 820
empty_container

exception 70, 250-251, 253, 275-276, 278,
303-304, 306, 431-432, 435, 532, 534,
551, 556, 558, 564-566, 576, 594, 599,
601, 607-609, 619
empty_container, member enumeration

WCPtrHashTable<Type> 112, 116
WCPtrSkipList<Type> 463, 467
WCPtrSkipListDict<Key,Value> 443
WCPtrSList<Type> 260
WCPtrSListlter<Type> 367

WCPtrSortedVector<Type> 541, 544 WCExcept 70
WCPtrVector<Type> 568, 572 enc_i, member enumeration
WCQueue<Type,FType> 424, 428 ios 698

endl, manipulator 748, 750
ends, manipulator 748, 751
entries, member function

WCSLink 284, 286
WCStack<Type,FType> 524, 528
WCVaConstSListIter<Type> 386

921

Index

WClsvDList<Type> 237, 249
WClsvSList<Type> 237, 249
WCPtrDList<Type> 260, 274
WCPtrHashDict<Key,Value> 85, 95
WCPtrHashSet<Type> 108, 122
WCPtrHashTable<Type> 108, 122
WCPtrOrderedVector<Type> 537, 549
WCPtrSkipList<Type> 459, 471

WCPtrSkipListDict<Key,Vaue> 439, 447

WCPtrSkipListSet<Type> 459, 471
WCPtrSList<Type> 260, 274
WCPtrSortedV ector<Type> 537, 549
WCQueue<Type,FType> 424, 430
WCStack<Type,FType> 524, 530
WCVaDList<Type> 288, 302
WCVaHashDict<Key,Value> 134, 143
WCVaHashSet<Type> 156, 169
WCValHashTable<Type> 156, 169
WCVa OrderedVector<Type> 581, 592
WCValSkipList<Type> 501, 512

WCVaSkipListDict<Key,Value> 482, 489

WCValSkipListSet<Type> 501, 512
WCValSList<Type> 288, 302
WCVa SortedVector<Type> 581, 592
EOF 5
eof, member function
ios 670, 674
eofbit, member enumeration
ios 688
epptr, member function
streambuf 809, 821
exception handling 3
exceptions 70
function 76
exceptions, member function
ios 670, 675
WCEXxcept 66, 69
WClterExcept 72, 75
exp, related function
Complex 17, 34
extractor 9, 713

922

fail, member function
ios 669, 676
failbit, member enumeration
ios 688
fd, member function
filebuf 625, 628
fstreambase 649, 658
filebuf 807
filebuf::attach 625-626
filebuf::close 625, 627
filebuf::fd 625, 628
filebuf::filebuf 625, 629-631
filebuf::is_open 625, 633
filebuf::open 625, 634
filebuf::openprot 624, 635
filebuf::overflow 625, 636
filebuf::pbackfail 625, 637
filebuf::seekoff 625, 638
filebuf::setbuf 625, 639
filebuf::sync 625, 640
filebuf::underflow 625, 641
filebuf::~filebuf 625, 632
filedesc 5
fill character 677
fill, member function
ios 670, 677
find, member function
WClsvDList<Type> 237, 250
WClsvSList<Type> 237, 250
WCPtrDList<Type> 260, 275
WCPtrHashDict<Key,Value> 85, 96
WCPtrHashSet<Type> 108, 123
WCPtrHashTable<Type> 108, 123
WCPtrOrderedVector<Type> 537, 550
WCPtrSkipList<Type> 459, 472

WCPtrskipListDict<Key,Value> 439, 448

WCPtrSkipListSet<Type> 459, 472
WCPtrSList<Type> 260, 275

Index

WCPtrSortedV ector<Type> 537, 550
WCValDList<Type> 288, 303
WCValHashDict<Key,Vaue> 134, 144
WCValHashSet<Type> 156, 170
WCVaHashTable<Type> 156, 170
WCVaOrderedVector<Type> 581, 593
WCValSkipList<Type> 501, 513
WCVaSkipListDict<Key,Value> 482, 490
WCValSkipListSet<Type> 501, 513
WCValSList<Type> 288, 303
WCVa SortedVector<Type> 581, 593

findKeyAndValue, member function
WCPtrHashDict<Key,Vaue> 85, 97
WCPtrSkipListDict<Key,Vaue> 439, 449
WCValHashDict<Key,Value> 134, 145
WCVa SkipListDict<Key,Value> 482, 491

findLast, member function
WClsvDList<Type> 237, 251
WClsvSList<Type> 237, 251
WCPtrDList<Type> 260, 276
WCPtrSList<Type> 260, 276
WCValDList<Type> 288, 304
WCValSList<Type> 288, 304

first, member function
WCPtrOrderedVector<Type> 537, 551
WCPtrSortedV ector<Type> 537, 551
WCQueue<Type,FType> 424, 431
WCVa OrderedVector<Type> 582, 594
WCVa SortedVector<Type> 582, 594

fixed, member enumeration
ios 679

flags, member function
ios 670, 678

floatfield, member enumeration
ios 679

flush, manipulator 748, 752

flush, member function
ostream 770, 772

fmtflags, member enumeration
ios 669, 679

forall, member function
WClsvDList<Type> 237, 252
WClsvSList<Type> 237, 252
WCPtrDList<Type> 260, 277

WCPtrHashDict<Key,Vaue> 85, 98
WCPtrHashSet<Type> 108, 124
WCPtrHashTable<Type> 108, 124
WCPtrSkipList<Type> 459, 473
WCPtrSkipListDict<Key,Vaue> 439, 450
WCPtrSkipListSet<Type> 459, 473
WCPtrSList<Type> 260, 277
WCVaDList<Type> 288, 305
WCVaHashDict<Key,Value> 134, 146
WCVaHashSet<Type> 156, 171
WCVaHashTable<Type> 156, 171
WCValSkipList<Type> 501, 514
WCValSkipListDict<Key,Value> 482, 492
WCVa SkipListSet<Type> 501, 514
WCValSList<Type> 288, 305
format precision 694
format width 704
formatted input 9
formatted output 11
freeze, member function
strstreambuf 863, 867
fstream 649, 706
fstream::fstream 642-646
fstream::open 642, 648
fstream::~fstream 642, 647
fstreambase 642, 662, 763
fstreambase::attach 649-650
fstreambase::close 649, 651
fstreambase::fd 649, 658
fstreambase::fstreambase 649, 652-655
fstreambase::is_open 649, 657
fstreambase::open 649, 659
fstreambase::rdbuf 649, 660
fstreambase::setbuf 649, 661
fstreambase::~fstreambase 649, 656
functions and types 13

gbump, member function

923

Index

streambuf 809, 822

gcount, member function
istream 714, 716

get area 807

get pointer 823

get, member function
istream 713-714, 717-720
WClsvDList<Type> 237, 253
WClsvSList<Type> 237, 253
WCPtrDList<Type> 260, 278
WCPtrSList<Type> 260, 278
WCQueue<Type,FType> 424, 432
WCValDList<Type> 288, 306
WCValSList<Type> 288, 306

get_at, member function
String 882, 885

getline, member function
istream 714, 721

good, member function
ios 669, 683

goodbit, member enumeration
ios 688

gptr, member function
streambuf 809, 823

header files
complex 3
except 3
fstream 3
generic 3
iomanip 3
new 4
stdiobuf 4
streambu 4
string 4
strstrea 4
wcdefs 4
wclbase 4

924

wclcom 4

wclibase 4

wclist 4

wclistit 4

wcqueue 4

wcstack 4
hex, manipulator 748, 753
hex, member enumeration

ios 679

!

ifstream 649, 713
ifstream::ifstream 662-666
ifstream::open 662, 668
ifstream::~ifstream 662, 667
ignore, member function
istream 714, 722
imag, member function
Complex 16, 35
imag, related function
Complex 17, 36
in, member enumeration
ios 690
in_avail, member function
streambuf 809, 824
index, member function
String 882, 886
WClsvDList<Type> 237, 254-255
WClsvSList<Type> 237, 254-255
WCPtrDList<Type> 260, 279
WCPtrOrderedVector<Type> 537, 552
WCPtrSList<Type> 260, 279
WCPtrSortedV ector<Type> 537, 552
WCValDList<Type> 288, 307
WCVa OrderedVector<Type> 582, 595
WCVaSList<Type> 288, 307
WCVa SortedVector<Type> 582, 595
index_range

Index

exception 70, 102, 150, 251, 276, 304,
431-432, 435, 454, 496, 532, 534, 551,
554, 556, 558, 576, 594, 597, 599, 601,
619
index_range, member enumeration
WCExcept 70
init, member function
ios 669, 684
insert, member function
WClsvConstDListIter<Type> 314
W(ClsvConstSListlter<Type> 314
WClsvDList<Type> 237, 256
WClsvDListlter<Type> 331-332, 342
WClsvSList<Type> 237, 256
WClsvSListlter<Type> 331-332, 342
WCPtrConstDListlter<Type> 350
WCPtrConstSListlter<Type> 350
WCPtrDList<Type> 260, 280
WCPtrDListlter<Type> 367-368, 378
WCPtrHashDict<Key,Vaue> 85, 99
WCPtrHashSet<Type> 108, 125
WCPtrHashTable<Type> 108, 125
WCPtrOrderedV ector<Type> 537, 553
WCPtrSkipList<Type> 459, 474
WCPtrSkipListDict<Key,Value> 439, 451
WCPtrSkipListSet<Type> 459, 474
WCPtrSList<Type> 260, 280
WCPtrSListlter<Type> 367-368, 378
WCPtrSortedV ector<Type> 537, 553
WCQueue<Type,FType> 424, 433
WCVaConstDListlter<Type> 386
WCVaConstSListlter<Type> 386
WCValDList<Type> 288, 308
WCValDListlter<Type> 403-404, 415
WCValHashDict<Key,Value> 134, 147
WCVaHashSet<Type> 156, 172
WCVaHashTable<Type> 156, 172
WCVa OrderedVector<Type> 582, 596
WCValSkipList<Type> 501, 515
WCVaSkipListDict<Key,Value> 482, 493
WCVa SkipListSet<Type> 501, 515
WCValSList<Type> 288, 308
WCValSListlter<Type> 403-404, 415
WCVa SortedVector<Type> 582, 596

insertAt, member function
WCPtrOrderedV ector<Type> 538, 554
WCPtrSortedV ector<Type> 538, 554
WCVaOrderedVector<Type> 582, 597
WCVa SortedVector<Type> 582, 597

inserter 11, 770

internal, member enumeration
ios 679

intrusive
classes 236

ios 649, 713, 770, 858

ios::adjustfield 679

ios::app 690

ios::append 690

ios:;ate 690

ios:;atend 690

ios::bad 669, 671

ios::badbit 688

ios:;basefield 679

ios::beg 698

ios::binary 690

ios::bitalloc 670, 672

ios..clear 669, 673

ios:;cur 698

ios::dec 679

ios:;:end 698

ios:.eof 670, 674

ios:.eofbit 688

ios::exceptions 670, 675

ios::fail 669, 676

ios::failbit 688

ios::fill 670, 677

ios.:fixed 679

ios::flags 670, 678

ios::floatfield 679

ios::fmtflags 669, 679

ios::good 669, 683

ios::goodbit 688

ios;:hex 679

ios:;in 690

ios.:init 669, 684

ios:internal 679

i0s::ios 669, 685-686

ios::iostate 669, 688

925

Index

ios::iword 670, 689

ios::left 679

ios.:nocreate 690

ios::noreplace 690

ios:;oct 679

ios::openmode 669, 690

ios::operator ! 670, 692

ios::operator void * 670, 693

ios:;out 690

ios::precision 670, 694

ios::pword 670, 695

ios.:rdbuf 669, 696

ios.:rdstate 669, 697

ios::right 679

ios::scientific 679

ios::seekdir 669, 698

ios::setf 670, 699

ios:;setstate 669, 700

ios::showbase 679

ios::showpoint 679

ios::showpos 679

ios::skipws 679

ios::stdio 679

ios::sync_with_stdio 670, 701

ios::text 690

ios::tie 669, 702

ios::trunc 690

ios::truncate 690

ios:;unitbuf 679

ios:;unsetf 670, 703

i0s::uppercase 679

ios.::width 670, 704

ios::xaloc 670, 705

ios::~ios 669, 687

iostate, member enumeration
ios 669, 688

iostream 642, 713, 770, 853

iostream::iostream 706-709

iostream::operator = 706, 711-712

iostream::~iostream 706, 710

ipfx, member function
istream 713, 723

is_open, member function
filebuf 625, 633

926

fstreambase 649, 657

isEmpty, member function
WClsvDList<Type> 237, 257
WClsvSList<Type> 237, 257
WCPtrDList<Type> 260, 281
WCPtrHashDict<Key,Value> 85, 100
WCPtrHashSet<Type> 108, 126
WCPtrHashTable<Type> 108, 126
WCPtrOrderedVector<Type> 537, 555
WCPtrSkipList<Type> 459, 475
WCPtrSkipListDict<Key,Value> 439, 452
WCPtrSkipListSet<Type> 459, 475
WCPtrSList<Type> 260, 281
WCPtrSortedV ector<Type> 537, 555
WCQueue<Type,FType> 424, 434
WCStack<Type,FType> 524, 531
WCValDList<Type> 288, 309
WCValHashDict<Key,Vaue> 134, 148
WCVaHashSet<Type> 156, 173
WCVaHashTable<Type> 156, 173
WCVa OrderedVector<Type> 582, 598
WCVaSkipList<Type> 501, 516
WCValSkipListDict<Key,Vaue> 482, 494
WCVa SkipListSet<Type> 501, 516
WCValSList<Type> 288, 309
WCVal SortedVector<Type> 582, 598

isfx, member function
istream 713, 724

istream 662, 669, 706, 744

istream input 9

istream::eatwhite 713, 715

istream::gcount 714, 716

istream::get 713-714, 717-720

istream::getline 714, 721

istream::ignore 714, 722

istream::ipfx 713, 723

istream::isfx 713, 724

istream::istream 713, 725-727

istream::operator = 714, 729-730

istream::operator >> 714, 731-736

istream::peek 714, 737

istream::putback 714, 738

istream::read 714, 739

istream::seekg 714, 740-741

Index

istream::sync 714, 742
istream::tellg 714, 743
istream::~istream 713, 728
istrstream 713, 858
istrstream::istrstream 744-746
istrstream::~istrstream 744, 747
iter_range
exception 76, 326, 328, 345, 347, 362, 364,
381, 383, 398, 400, 418, 420
iter_range, member enumeration
W(ClterExcept 76
iterator classes 4
iword, member function
ios 670, 689

key, member function
WCPtrHashDictlter<Key,Value> 182, 187
WCValHashDictlter<Key,Value> 193, 198

last, member function
WCPtrOrderedVector<Type> 537, 556
WCPtrSortedV ector<Type> 537, 556
WCQueue<Type,FType> 424, 435
WCValOrderedVector<Type> 582, 599
WCValSortedVector<Type> 582, 599

left, member enumeration
ios 679

length, member function
String 882, 887
WCPtrVector<Type> 568, 575
WCVaVector<Type> 612, 618

list containers 4

log, related function
Complex 17

l0g10, related function
Complex 17, 38

lower, member function
String 882, 888

mani pulator manipulators
dec 748-749
endl 748, 750
ends 748, 751
flush 748, 752
hex 748, 753
oct 748, 754
resetiosflags 748, 755
setbase 748, 756
setfill 748, 757
setiosflags 748, 758
setprecision 748, 759
setw 748, 760
setwidth 748, 761
WS 748, 762
manipulators
dec 748-749
endl 748, 750
ends 748, 751
flush 748, 752
hex 748, 753
oct 748, 754
resetiosflags 748, 755
Setbase 748, 756
setfill 748, 757
setiosflags 748, 758
setprecision 748, 759
setw 748, 760
setwidth 748, 761
ws 748, 762
match, member function

927

Index

String 882, 889

nocreate, member enumeration
ios 690
noreplace, member enumeration
ios 690
norm, related function
Complex 17, 39
not_empty
exception 70, 89, 112, 116, 138, 160, 164, 241,
244, 265, 269, 293, 297, 428, 443, 463,
467, 486, 505, 509, 528, 541, 544, 572,
585, 588, 616
not_empty, member enumeration
WCEXxcept 70
not_unique
exception 71, 125, 172, 474, 515
not_unique, member enumeration
WCExcept 70
num, related function
Complex 37

occurrencesOf, member function
WCPtrHashSet<Type> 108, 127
WCPtrHashTable<Type> 108, 127
WCPtrOrderedVector<Type> 537, 557
WCPtrSkipList<Type> 459, 476
WCPtrSkipListSet<Type> 459, 476
WCPtrSortedV ector<Type> 537, 557
WCVaHashSet<Type> 156, 174
WCVaHashTable<Type> 156, 174
WCVa OrderedVector<Type> 582, 600

928

WCVal SkipList<Type> 501, 517
WCValSkipListSet<Type> 501, 517
WCValSortedVector<Type> 582, 600

oct, manipulator 748, 754

oct, member enumeration
ios 679

ofstream 649, 770

ofstream::of stream 763-767

ofstream::open 763, 769

of stream::~ofstream 763, 768

open, member function
filebuf 625, 634
fstream 642, 648
fstreambase 649, 659
ifstream 662, 668
ofstream 763, 769

openmode, member enumeration
ios 669, 690

openprot, member data
filebuf 635

openprot, member function
filebuf 624

operator !, member function
ios 670, 692
String 882, 890

operator !=, related function
Complex 17,40
String 883, 891

operator (), member function
String 882, 892-893
WClsvConstDListlter<Type> 315, 324
WClsvConstSListIter<Type> 315, 324
WClsvDListlter<Type> 332, 343
WClsvSListlter<Type> 332, 343
WCPtrConstDListlter<Type> 351, 360
WCPtrConstSListlter<Type> 351, 360
WCPtrDListlter<Type> 368, 379
WCPtrHashDictlter<Key,Value> 182, 188
WCPtrHashSetlter<Type> 204, 213
WCPtrHashTablelter<Type> 204, 213
WCPtrSListlter<Type> 368, 379
WCValConstDListIter<Type> 387, 396
WCValConstSListlter<Type> 387, 396
WCValDListlter<Type> 404, 416

Index

WCValHashDictlter<Key,Vaue> 193, 199
WCValHashSetlter<Type> 217, 226
WCValHashTablelter<Type> 217, 226
WCValSListiter<Type> 404, 416

operator *, related function

Complex 17,41

operator *=, member function

Complex 16, 42

operator ++, member function

W(ClsvConstDListlter<Type> 315, 325
WClsvConstSListIter<Type> 315, 325
WClsvDListlter<Type> 332, 344
WClsvSListlter<Type> 332, 344
WCPtrConstDListlter<Type> 351, 361
WCPtrConstSListlter<Type> 351, 361
WCPtrDListlter<Type> 368, 380
WCPtrHashDictlter<Key,Value> 182, 189
WCPtrHashSetlter<Type> 204, 214
WCPtrHashTablelter<Type> 204, 214
WCPtrSListlter<Type> 368, 380
WCValConstDListIter<Type> 387, 397
WCValConstSListlter<Type> 387, 397
WCValDListlter<Type> 404, 417
WCVaHashDictlter<Key,Vaue> 193, 200
WCVaHashSetlter<Type> 217, 227
WCVaHashTablelter<Type> 217, 227
WCVaSListiter<Type> 404, 417

operator +, member function

Complex 16, 43

operator +, related function

Complex 16-17, 44
String 883, 894

operator +=, member function

Complex 16, 45

String 882, 895
W(ClsvConstDListIter<Type> 315, 326
W(ClsvConstSListlter<Type> 315, 326
WClsvDListiter<Type> 332, 345
WClsvSListlter<Type> 332, 345
WCPtrConstDListIter<Type> 351, 362
WCPtrConstSListlter<Type> 351, 362
WCPHrDListlter<Type> 368, 381
WCPtrSListlter<Type> 368, 381
WCVaConstDListlter<Type> 387, 398

WCValConstSListlter<Type> 387, 398
WCValDListIter<Type> 404, 418
WCValSListlter<Type> 404, 418
operator -, member function
Complex 16, 46
operator -, related function
Complex 17, 47
operator --, member function
W(ClsvConstDListlter<Type> 315, 327
W(ClsvConstSListlter<Type> 315, 327
WClsvDListlter<Type> 331-332, 346
WClsvSListlter<Type> 331-332, 346
WCPtrConstDListIter<Type> 351, 363
WCPtrConstSListlter<Type> 351, 363
WCPtrDListlter<Type> 367-368, 382
WCPtrSListlter<Type> 367-368, 382
WCVaConstDListlter<Type> 387, 399
WCVaConstSListIter<Type> 387, 399
WCValDListlter<Type> 403-404, 419
WCValSListlter<Type> 403-404, 419
operator -=, member function
Complex 16, 48
WClsvConstDListlter<Type> 315, 328
W(ClsvConstSListlter<Type> 315, 328
WClsvDListlter<Type> 331-332, 347
WClsvSListlter<Type> 331-332, 347
WCPtrConstDListlter<Type> 351, 364
WCPtrConstSListlter<Type> 351, 364
WCPtrDListlter<Type> 367-368, 383
WCPtrSListlter<Type> 367-368, 383
WCValConstDListIter<Type> 387, 400
WCValConstSListlter<Type> 387, 400
WCValDListlter<Type> 403-404, 420
WCValSListlter<Type> 403-404, 420
operator /, related function
Complex 17,49
operator /=, member function
Complex 16, 50
operator <, related function
String 883, 896
operator <<, member function
ostream 771, 773-775, 777-780
operator <<, related function
Complex 16, 51

929

Index

String 883, 897

operator <=, related function
String 883, 898

operator =, member function
Complex 16, 52
iostream 706, 711-712
istream 714, 729-730
ostream 771, 781-782
String 882, 899
WClsvDList<Type> 236, 258
WClsvSList<Type> 236, 258
WCPtrDList<Type> 261, 282
WCPtrHashDict<Key,Value> 85, 103
WCPtrHashSet<Type> 108, 128
WCPtrHashTable<Type> 108, 128
WCPtrOrderedVector<Type> 538, 559
WCPtrSkipList<Type> 459, 477
WCPtrSkipListDict<Key,Vaue> 439, 455
WCPtrSkipListSet<Type> 459, 477
WCPtrSList<Type> 261, 282
WCPtrSortedV ector<Type> 538, 559
WCPtrVector<Type> 568, 577
WCValDList<Type> 288, 310
WCValHashDict<Key,Value> 134, 151
WCVaHashSet<Type> 156, 175
WCValHashTable<Type> 156, 175
WCVaOrderedVector<Type> 582, 602
WCValSkipList<Type> 501, 518
WCVa SkipListDict<Key,Value> 482, 497
WCValSkipListSet<Type> 501, 518
WCValSList<Type> 288, 310
WCValSortedVector<Type> 582, 602
WCVaVector<Type> 612, 620

operator ==, member function
WClsvDList<Type> 237, 259
WClsvSList<Type> 237, 259
WCPtrDList<Type> 261, 283
WCPtrHashDict<Key,Vaue> 85, 104
WCPtrHashSet<Type> 108, 129
WCPtrHashTable<Type> 108, 129
WCPtrOrderedVector<Type> 538, 560
WCPtrSkipList<Type> 459, 478
WCPtrSkipListDict<Key,Vaue> 439, 456
WCPtrSkipListSet<Type> 459, 478

930

WCPtrSList<Type> 261, 283
WCPtrSortedV ector<Type> 538, 560
WCPtrVector<Type> 568, 578
WCValDList<Type> 288, 311
WCValHashDict<Key,Value> 134, 152
WCVaHashSet<Type> 156, 176
WCVaHashTable<Type> 156, 176
WCVa OrderedVector<Type> 582, 603
WCValSkipList<Type> 501, 519
WCValSkipListDict<Key,Value> 482, 498
WCVal SkipListSet<Type> 501, 519
WCValSList<Type> 288, 311
WCValSortedVector<Type> 582, 603
WCValVector<Type> 612, 621

operator ==, related function
Complex 17,53
String 883, 900

operator >, related function
String 883, 901

operator >=, related function
String 883, 902

operator >>, member function
istream 714, 731-736

operator >>, related function
Complex 16, 54
String 883, 903

operator [], member function
String 882, 904
WCPtrHashDict<Key,Vaue> 85, 101-102
WCPtrOrderedVector<Type> 538, 558
WCPtrSkipListDict<Key,Vaue> 439, 453-454
WCPtrSortedV ector<Type> 538, 558
WCPtrVector<Type> 568, 576
WCValHashDict<Key,Vaue> 134, 149-150
WCVa OrderedVector<Type> 582, 601
WCVaSkipListDict<Key,Value> 482,

495-496

WCVa SortedVector<Type> 582, 601
WCVaVector<Type> 612, 619

operator char const *, member function
String 882, 906

operator char, member function
String 882, 905

operator void *, member function

Index

ios 670, 693
opfx, member function
ostream 770, 783
osfx, member function
ostream 770, 784
ostream 669, 706, 763, 794
ostream output 11
ostream::flush 770, 772
ostream::operator << 771, 773-775, 777-780
ostream::operator = 771, 781-782
ostream::opfx 770, 783
ostream::osfx 770, 784
ostream::ostream 770, 785-787
ostream::put 770, 789
ostream::seekp 770-771, 790-791
ostream::tellp 771, 792
ostream::write 771, 793
ostream::~ostream 770, 788
ostrstream 770, 858
ostrstream::ostrstream 794-796
ostrstream::pcount 794, 798
ostrstream::str 794, 799
ostrstream::~ostrstream 794, 797
out, member enumeration
ios 690
out_of _memory 375, 378, 412, 415
exception 70, 86, 88, 99, 101, 103, 106, 109,
111, 113, 115, 125, 128, 132, 135, 137,
147, 149, 151, 154, 157, 159, 161, 163,
172, 175, 179, 264, 268, 270, 280, 282,
292, 296, 298, 308, 310, 433, 440, 442,
451, 453, 455, 460, 462, 464, 466, 474,
477, 483, 485, 493, 495, 497, 502, 504,
506, 508, 515, 518, 533, 540, 543, 545,
553-554, 559, 561, 567, 571, 576-577,
579, 584, 587, 589, 596-597, 602, 604,
610, 615, 619-620, 622
out_of _memory, member enumeration
WCEXxcept 70
out_waiting, member function
streambuf 809, 825
overflow, member function
filebuf 625, 636
stdiobuf 800-801

streambuf 809, 826
strstreambuf 864, 868

pbackfail, member function
filebuf 625, 637
streambuf 809, 827
pbase, member function
streambuf 809, 828
pbump, member function
streambuf 809, 829
pcount, member function
ostrstream 794, 798
peek, member function
istream 714, 737
pointer
lists 231
polar, related function
Complex 17,55
pop, member function
WCStack<Type,FType> 524, 532
pow, related function
Complex 17,56
pptr, member function
streambuf 809, 830
precision, member function
ios 670, 694
predefined objects 7
prepend, member function
WCPtrOrderedVector<Type> 538, 561
WCPtrSortedV ector<Type> 538, 561
WCVaOrderedVector<Type> 582, 604
WCVal SortedVector<Type> 582, 604
push, member function
WCStack<Type,FType> 524, 533
put area 807
put pointer 830
put, member function
ostream 770, 789

931

Index

put_at, member function
String 882, 907

putback, member function
istream 714, 738

pword, member function
ios 670, 695

rdbuf, member function
fstreambase 649, 660
ios 669, 696
strstreambase 858-859

rdstate, member function
ios 669, 697

read, member function
istream 714, 739

real, member function
Complex 16, 57

real, related function
Complex 17,58

remove, member function
WCPtrHashDict<Key,Value> 85, 105
WCPtrHashSet<Type> 108, 130
WCPtrHashTable<Type> 108, 130
WCPtrOrderedV ector<Type> 537, 562
WCPtrSkipList<Type> 459, 479
WCPtrSkipListDict<Key,Value> 439, 457
WCPtrSkipListSet<Type> 459, 479
WCPtrSortedV ector<Type> 537, 562
WCValHashDict<Key,Value> 134, 153
WCValHashSet<Type> 156, 177
WCVaHashTable<Type> 156, 177
WCVaOrderedVector<Type> 582, 605
WCValSkipList<Type> 501, 520
WCVa SkipListDict<Key,Value> 482, 499
WCVal SkipListSet<Type> 501, 520
WCVa SortedVector<Type> 582, 605

removeAll, member function
WCPtrHashSet<Type> 108, 131

932

WCPtrHashTable<Type> 108, 131
WCPtrOrderedVector<Type> 537, 563
WCPtrSkipList<Type> 459, 480
WCPtrSkipListSet<Type> 459, 480
WCPtrSortedV ector<Type> 537, 563
WCVaHashSet<Type> 156, 178
WCVaHashTable<Type> 156, 178
WCVa OrderedVector<Type> 582, 606
WCValSkipList<Type> 501, 521
WCValSkipListSet<Type> 501, 521
WCVa SortedVector<Type> 582, 606
removeAt, member function
WCPtrOrderedVector<Type> 537, 564
WCPtrSortedV ector<Type> 537, 564
WCVaOrderedVector<Type> 582, 607
WCVal SortedVector<Type> 582, 607
removeFirst, member function
WCPtrOrderedVector<Type> 537, 565
WCPtrSortedV ector<Type> 537, 565
WCVa OrderedVector<Type> 582, 608
WCVa SortedVector<Type> 582, 608
removel ast, member function
WCPtrOrderedV ector<Type> 537, 566
WCPtrSortedV ector<Type> 537, 566
WCVaOrderedVector<Type> 582, 609
WCVa SortedVector<Type> 582, 609
reserve area 807
reset, member function
W(ClsvConstDListlter<Type> 314-315,
329-330
WClsvConstSListIter<Type> 314-315,
329-330
WClsvDListlter<Type> 331, 348-349
WClsvSListlter<Type> 331, 348-349
WCPtrConstDListlter<Type> 350-351,
365-366
WCPtrConstSListlter<Type> 350-351,
365-366
WCPtrDListlter<Type> 367, 384-385

WCPtrHashDictlter<Key,Value> 182, 190-191

WCPtrHashSetlter<Type> 204, 215-216
WCPtrHashTablelter<Type> 204, 215-216
WCPtrSListlter<Type> 367, 384-385

Index

WCValConstDListIter<Type> 386-387,
401-402
WCValConstSListlter<Type> 386-387,
401-402
WCValDListlter<Type> 403, 421-422
WCVaHashDictlter<Key,Vaue> 193,
201-202
WCVaHashSetlter<Type> 217, 228-229
WCValHashTablelter<Type> 217, 228-229
WCVaSListlter<Type> 403, 421-422
resetiosflags, manipulator 748, 755
resize, member function
WCPtrHashDict<Key,Value> 85, 106
WCPtrHashSet<Type> 108, 132
WCPtrHashTable<Type> 108, 132
WCPtrOrderedV ector<Type> 537, 567
WCPtrSortedV ector<Type> 537, 567
WCPtrVector<Type> 568, 579
WCVaHashDict<Key,Value> 134, 154
WCVaHashSet<Type> 156, 179
WCVaHashTable<Type> 156, 179
WCValOrderedVector<Type> 582, 610
WCValSortedVector<Type> 582, 610
WCVaVector<Type> 612, 622
resize required
exception 71, 536, 539, 542, 545, 553-554,
561, 576, 580, 583, 586, 589, 596-597,
604, 619
resize required, member enumeration
WCExcept 70
right, member enumeration
ios 679

sbumpc, member function
streambuf 809, 831

scientific, member enumeration
ios 679

seekdir, member enumeration

ios 669, 698
seekg, member function
istream 714, 740-741
seekoff, member function
filebuf 625, 638
streambuf 810, 832
strstreambuf 864, 869
seekp, member function
ostream 770-771, 790-791
seekpos, member function
streambuf 810, 833
setb, member function
streambuf 809, 834
setbase, manipulator 748, 756
setbuf, member function
filebuf 625, 639
fstreambase 649, 661
streambuf 810, 835
strstreambuf 864, 870
setf, member function
ios 670, 699
setfill, manipulator 748, 757
setg, member function
streambuf 809, 836
setiosflags, manipulator 748, 758
setp, member function
streambuf 809, 837
setprecision, manipulator 748, 759
setstate, member function
ios 669, 700
setw, manipulator 748, 760
setwidth, manipulator 748, 761
sgetc, member function
streambuf 809, 838
sgetchar, member function
streambuf 809, 839
sgetn, member function
streambuf 809, 840
showbase, member enumeration
ios 679
showpoint, member enumeration
ios 679
showpos, member enumeration
ios 679

933

Index

sin, related function
Complex 17,59
sinh, related function
Complex 17, 60
skipws, member enumeration
ios 679
snextc, member function
streambuf 809, 841
speekc, member function
streambuf 809, 842
sputbacke, member function
streambuf 809, 843
sputc, member function
streambuf 809, 844
sputn, member function
streambuf 809, 845
sart, related function
Complex 17, 61
stdio, member enumeration
ios 679
stdiobuf 807
stdiobuf::overflow 800-801
stdiobuf::stdiobuf 800, 802-803
stdiobuf::sync 800, 805
stdiobuf::underflow 800, 806
stdiobuf::~stdiobuf 800, 804
stossc, member function
streambuf 809, 846
str, member function
ostrstream 794, 799
strstream 853-854
strstreambuf 863, 871
streambuf 624, 800, 863
streambuf::allocate 809, 811
streambuf::base 809, 812
streambuf::blen 809, 813
streambuf::dbp 809, 814
streambuf::do_sgetn 809, 815
streambuf::do_sputn 809, 816
streambuf::doallocate 809, 817
streambuf::eback 809, 818
streambuf::ebuf 809, 819
streambuf::egptr 809, 820
streambuf::epptr 809, 821

934

streambuf::gbump 809, 822
streambuf::gptr 809, 823
streambuf::in_avail 809, 824
streambuf::out_waiting 809, 825
streambuf::overflow 809, 826
streambuf::pbackfail 809, 827
streambuf::pbase 809, 828
streambuf::pbump 809, 829
streambuf::pptr 809, 830
streambuf::sbumpc 809, 831
streambuf::seekoff 810, 832
streambuf::seekpos 810, 833
streambuf::setb 809, 834
streambuf::setbuf 810, 835
streambuf::setg 809, 836
streambuf::setp 809, 837
streambuf::sgetc 809, 838
streambuf::sgetchar 809, 839
streambuf::sgetn 809, 840
streambuf::snextc 809, 841
streambuf::speekc 809, 842
streambuf::sputbackc 809, 843
streambuf::sputc 809, 844
streambuf::sputn 809, 845
streambuf::stossc 809, 846

streambuf::streambuf 809, 847-848

streambuf::sync 810, 850
streambuf::unbuffered 809, 851
streambuf::underflow 810, 852
streambuf::~streambuf 809, 849
streamoff 5
streampos 5
String related functions
operator != 883, 891
operator + 883, 894
operator < 883, 896
operator << 883, 897
operator <= 883, 898
operator == 883, 900
operator > 883, 901
operator >= 883, 902
operator >> 883, 903
valid 883, 915
String::alloc_mult_size 882, 884

Index

String::get_at 882, 885

String::index 882, 886

String::length 882, 887

String::lower 882, 888

String::match 882, 889
String::operator ! 882, 890
String::operator () 882, 892-893
String::operator += 882, 895
String::operator = 882, 899
String::operator [] 882, 904
String::operator char 882, 905
String::operator char const * 882, 906
String::put_at 882, 907
String::String 882, 908-912
String::upper 882, 914

String::valid 882, 916
String::~String 882, 913

strstream 706, 858

strstream::str 853-854
strstream::strstream 853, 855-856
strstream::~strstream 853, 857
strstreambase 744, 794, 853
strstreambase::rdbuf 858-859
strstreambase;:strstreambase 858, 860-861
strstreambase:: ~strstreambase 858, 862

strstreambuf

strstreambuf
strstreambuf
strstreambuf;
strstreambuf
strstreambuf
strstreambuf:
strstreambuf:
strstreambuf;
strstreambuf
strstreambuf:
strstreambuf;

807

:dloc_size increment 863, 865
.doallocate 863, 866
.freeze 863, 867

.overflow 864, 868
:seekoff 864, 869

:setbuf 864, 870

:str 863, 871

:strstreambuf 863, 872-875
:sync 864, 878

:underflow 864, 879
:~strstreambuf 863, 877

sync, member function
filebuf 625, 640
istream 714, 742
stdiobuf 800, 805
streambuf 810, 850
strstreambuf 864, 878
sync_with_stdio, member function

ios 670, 701

tan, related function
Complex 18, 62

tanh, related function
Complex 18, 63

tellg, member function
istream 714, 743

tellp, member function
ostream 771, 792

text, member enumeration
ios 690

tie, member function
ios 669, 702

top, member function
WCStack<Type,FType> 524, 534

trunc, member enumeration
ios 690

truncate, member enumeration
ios 690

unbuffered, member function
streambuf 809, 851
undef_item 187, 192, 198, 203, 212, 225, 323,
341, 359, 377, 395, 414
exception 76
undef_item, member enumeration
WClterExcept 76
undef_iter
exception 76, 186, 188-189, 197, 199-200,
211, 213-214, 224, 226-227, 322,
324-328, 339-340, 342-347, 358,

935

Index

360-364, 375-376, 378-383, 394,
396-400, 412-413, 415-420
undef_iter, member enumeration
WClterExcept 76
underflow, member function
filebuf 625, 641
stdiobuf 800, 806
streambuf 810, 852
strstreambuf 864, 879
undex_iter
exception 181, 313
unformatted input 9
unformatted output 11
unitbuf, member enumeration
ios 679
unsetf, member function
ios 670, 703
upper, member function
String 882, 914
uppercase, member enumeration
ios 679

valid, member function
String 882, 916

valid, related function
String 883, 915

value
lists 231

value, member function
WCPtrHashDictlter<Key,Value> 182, 192
WCVaHashDictlter<Key,Vaue> 193, 203

936

W

wc_state, member enumeration

WCEXxcept 66, 70
WCDLink 284
WCDLink::WCDLink 233-234
WCDLink::~WCDLink 233, 235
WCExcept::all_fine 70
WCExcept::check_all 70
WCEXxcept::check_none 70
WCEXxcept::empty_container 70
WCEXxcept::exceptions 66, 69
WCEXcept::index_range 70
WCEXxcept::not_empty 70
WCEXcept::not_unique 70
WCEXcept::out_of_memory 70
WCEXxcept::resize required 70
WCEXxcept::wc_state 66, 70
WCExcept::WCExcept 66-67
WCEXxcept::zero_buckets 70
WCEXcept::~WCExcept 66, 68
W(ClsvConstDListlter, member function

W(ClsvConstDListIter<Type> 319-320

W(ClsvConstSListlter<Type> 319-320
W(ClsvConstDListlter<Type>::append 314
W(ClsvConstDListlter<Type>::container 314, 322
W(ClsvConstDListlter<Type>::current 314, 323
W(ClsvConstDListlter<Type>::insert 314
W(ClsvConstDListlter<Type>::operator () 315,

WCIsvgiistDListlteKTyp@::operator ++ 315,

WCIsvgiistDListlter<Type>::operator += 315,

WCIa/(SZiistDListlter<Type>::operator -- 315,

WCIw?:iﬁstDListlteKTypez:operator -= 315,

WCIwgiistDListlteKTypex:reset 314-315,
329-330

Index

W(ClsvConstDListlter<Type>::WClsvConstDListl

ter 319-320

WClsvConstDListlter<Type>::WClsvConstSListl

ter 316-317

W(ClsvConstDListlter<Type>::~WClsvConstDLis

titer 321

W(ClsvConstDListlter<Type>::~WClsvConstSLis

titer 318

WClsvConstSListlter, member function
W(ClsvConstDListlter<Type> 316-317
WClsvConstSListIter<Type> 316-317

WClsvConstSListlter<Type>::
WClsvConstSListlter<Type>::
W(ClsvConstSListlter<Type>::
W(ClsvConstSListlter<Type>::
W(ClsvConstSListlter<Type>::

324

W(ClsvConstSListlter<Type>::

325

W(ClsvConstSListlter<Type>::

326

WClsvConstSListlter<Type>::

327

W(ClsvConstSListlter<Type>::

328

W(ClsvConstSListlter<Type>::

329-330

W(ClsvConstSListlter<Type>::

ter 319-320

W(ClsvConstSListlter<Type>::

er 316-317

W(ClsvConstSListlter<Type>::

er<Type> 314

W(ClsvConstSListlter<Type>::

titer 321

W(ClsvConstSListlter<Type>::

Iter 318

W(ClsvConstSListlter<Type>::

Iter<Type> 314

append 314
container 314, 322
current 314, 323
insert 314
operator () 315,

operator ++ 315,

operator += 315,

operator -- 315,
operator -= 315,
reset 314-315,

WClsvConstDListl

WClsvConstSListlt

WClsvConstSListlt

~WClsvConstDLis

~WClsvConstSList

~WClsvConstSList

W(ClsvDList, member function
WClsvDList<Type> 236, 240, 242-244
WClsvSList<Type> 236, 240, 242-244

W(ClsvDList<Type>::append 237, 245

WClsvDList<Type>::clear 237, 246

WClsvDList<Type>:
WClsvDList<Type>:
WClsvDList<Type>:
W(ClsvDList<Type>:
WClsvDList<Type>:
WClsvDList<Type>:
WClsvDList<Type>:
WClsvDList<Type>:
WClsvDList<Type>:
WClsvDList<Type>:
WClsvDList<Type>:
WClsvDList<Type>:
WClsvDList<Type>:

:.clearAndDestroy 237, 247
:contains 237, 248
entries 237, 249

:find 237, 250
findLast 237, 251
:forAll 237, 252

:get 237, 253

:index 237, 254-255
sinsert 237, 256
[isEmpty 237, 257
:operator = 236, 258
:operator == 237, 259
‘WClsvDList 236, 240,

242-244

W(ClsvDList<Type>::WClsvSList 236, 239, 241

WClsvDListlter, member function
WClsvDListlter<Type> 336-337
WClsvSListlter<Type> 336-337

W(ClsvDListlter<Type>:
W(ClsvDListlter<Type>:
W(ClsvDListlter<Type>:
W(ClsvDListlter<Type>:
W(ClsvDListlter<Type>:
WClsvDListlter<Type>:
W(ClsvDListlter<Type>:
W(ClsvDListlter<Type>:
W(ClsvDListlter<Type>:

347

W(ClsvDListlter<Type>:
W(ClsvDListlter<Type>::

336-337

W(ClsvDListlter<Type>:

333-334

WClsvDListIter<Type>:
W(ClsvDListlter<Type>:

:append 331, 339
:container 331, 340
:current 331, 341

sinsert 331-332, 342
:operator () 332, 343
:operator ++ 332, 344
:operator += 332, 345
:operator -- 331-332, 346
:operator -= 331-332,

‘reset 331, 348-349

WClsvDListlter

‘WClsvSListlter

:~WClsvDListlter 338
-~WClsvSListlter 335

W(ClsvSList, member function
WClIsvDList<Type> 236, 239, 241
WClsvSList<Type> 236, 239, 241

WClsvSList<Type>:
WClsvSList<Type>::
W(ClsvSList<Type>::
WClsvSList<Type>::
W(ClsvSList<Type>::
WClsvSList<Type>::

:append 237, 245

clear 237, 246
clearAndDestroy 237, 247
contains 237, 248

entries 237, 249

find 237, 250

937

Index

WClsvSList<Type>:
WClsvSList<Type>:
W(ClsvSList<Type>:
W(ClsvSList<Type>:
WClsvSList<Type>:
WClsvSList<Type>:
WClsvSList<Type>:
WClsvSList<Type>:
WClsvSList<Type>:

242-244

WClsvSList<Type>:
WClsvSList<Type>:

236-237

W(ClsvSList<Type>:

findLast 237, 251
:forAll 237, 252

:get 237, 253

lindex 237, 254-255
linsert 237, 256
lisEmpty 237, 257
:operator = 236, 258
:operator == 237, 259
‘WClsvDList 236, 240,

‘WClsvSList 236, 239, 241
‘WClsvSList<Type>

~WClsvSList<Type>

W(ClterExcept::iter_range 76
W(ClterExcept::undef_item 76
W(ClterExcept::undef_iter 76
W(ClterExcept::wciter_state 72, 76
W(ClterExcept::WClterExcept 72-73
W(ClterExcept::~WClterExcept 72, 74
WCListExcept
class 66
WCPtrConstDListlter, member function
WCPtrConstDListIter<Type> 355-356
WCPtrConstSListlter<Type> 355-356

236-237
W(ClsvSListlter, member function
WClsvDListlter<Type> 333-334
WClsvSListlter<Type> 333-334
WClsvSListlter<Type>::append 331, 339
W(ClsvSListlter<Type>::container 331, 340
W(ClsvSListlter<Type>::current 331, 341
WClsvSListlter<Type>::insert 331-332, 342
W(ClsvSListlter<Type>::operator () 332, 343
W(ClsvSListlter<Type>:.operator ++ 332, 344
W(ClsvSListlter<Type>:.operator += 332, 345
W(ClsvSListlter<Type>:.operator -- 331-332, 346
W(ClsvSListlter<Type>::operator -= 331-332,
347
W(ClsvSListlter<Type>::reset 331, 348-349
W(ClsvSListlter<Type>::WClsvDListlter
336-337
W(ClsvSListlter<Type>::WClsvSListlter 333-334
W(ClsvSListlter<Type>::WClsvSListlter<Type>
331
WClsvSListlter<Type>::~WClsvDListlter 338
WClsvSListlter<Type>::~WClsvSListlter 335
W(ClsvSListlter<Type>::~WClsvSListIter<Type>
331
wciter_state, member enumeration
W(ClterExcept 72, 76
W(ClterExcept::all_fine 76
W(ClterExcept::check_all 76
W(ClterExcept::check_none 76
W(ClterExcept::exceptions 72, 75

938

WCPtrConstDListlter<Type>:
WCPtrConstDListlter<Type>:
WCPtrConstDListlter<Type>:
WCPtrConstDListIter<Type>:
WCPtrConstDListIter<Type>:

360

WCPtrConstDL istlter<Type>:

:append 350
:container 350, 358
:current 350, 359
sinsert 350
:operator () 351,

:operator ++ 351,

WCPtrgiilstDListlter<Type>::operator += 351,
WCPtrggﬁstDListlter<Type>::operator -- 351,
WCPtrg?)?lstDListlter<Type>::operator -= 351,
WCPtr(gigistDListlteKTypez:reaet 350-351,

365-366

WCPtrConstDL istlter<Type>:

ter 355-356

WCPtrConstDListlter<Type>::

er 352-353

WCPtrConstDListlter<Type>:

titer 357

WCPtrConstDListIter<Type>:

Iter 354

:WCPtrConstDListl

WCPtrConstSListlt

:~WCPtrConstDLis

:~WCPtrConstSList

WCPtrConstSListlter, member function
WCPtrConstDListlter<Type> 352-353
WCPtrConstSListlter<Type> 352-353

WCPtrConstSListlter<Type>

WCPtrConstSListlter<Type>

WCPtrConstSListlter<Type>

WCPtrConstSListlter<Type>

WCPtrConstSListlter<Type>
360

::append 350
::container 350, 358
.current 350, 359
sinsert 350
::operator () 351,

Index

WCPtrConstSListlter<Type>:

361

WCPtrConstSListlter<Type>:

362

WCPtrConstSListlter<Type>:

:operator ++ 351,

:operator += 351,

WCPtrDListIter<Type>:
WCPtrDListlter<Type>:
WCPtrDListIter<Type>:
WCPtrDListlter<Type>:
WCPtrDListlter<Type>:

:append 367, 375
:container 367, 376
:current 367, 377
linsert 367-368, 378
:operator () 368, 379

363

WCPtrConstSListlter<Type>:

364

WCPtrConstSListlter<Type>:

365-366

:operator -- 351,
:operator -= 351,
‘reset 350-351,

WCPtrConstSListIter<Type>::WCPtrConstDLIistIt

er 355-356

WCPtrConstSListIter<Type>::WCPtrConstSListIt

er 352-353

WCPtrConstSListIter<Type>::WCPtrConstSListIt
er<Type> 350

WCPtrConstSListlter<Type>:

Iter 357

WCPtrConstSListlter<Type>:

Iter 354

WCPtrConstSListlter<Type>:

:~WCPtrConstDList

:~WCPtrConstSList

:~WCPtrConstSList

Iter<Type> 350
WCPtrDList, member function
WCPtrDList<Type> 264, 266-269
WCPtrSList<Type> 264, 266-269

WCPtrDList<Type>:
WCPtrDList<Type>:
WCPtrDList<Type>:
WCPtrDList<Type>:
WCPtrDList<Type>:
WCPtrDList<Type>:
WCPtrDList<Type>:
WCPtrDList<Type>:
WCPtrDList<Type>:
WCPtrDList<Type>:
WCPtrDList<Type>:
WCPtrDList<Type>:
WCPtrDList<Type>:
WCPtrDList<Type>:
WCPtrDList<Type>::
WCPtrDList<Type>:

:append 260, 270
:Clear 260, 271
.clearAndDestroy 260, 272
:contains 260, 273
-entries 260, 274
:find 260, 275
findLast 260, 276
:forAll 260, 277

:get 260, 278

:index 260, 279
sinsert 260, 280
:isEmpty 260, 281
:operator = 261, 282
:operator == 261, 283

WCPtrDList 264, 266-269

‘WCPtrSList 262-263, 265

WCPtrDListlter, member function
WCPtrDListlter<Type> 372-373
WCPtrSListlter<Type> 372-373

WCPtrDListlter<Type>:

WCPtrDListlter<Type>:

WCPtrDListlter<Type>:

WCPtrDListlter<Type>:
383

WCPtrDListIter<Type>::reset

:operator ++ 368, 380
:operator += 368, 381
:operator -- 367-368, 382
:operator -= 367-368,

367, 384-385

WCPtrDListIter<Type>::WCPtrDListI ter

372-373

WCPtrDListlter<Type>::WCPtrSListlter 369-370

WCPtrDListiter<Type>:
WCPtrDListlter<Type>:

~WCPtrDListlter 374
~WCPtrSListlter 371

WCPtrHashDict, member function
WCPtrHashDict<Key,Vaue> 85

WCPtrHashDict<Key,Vaue>::
WCPtrHashDict<Key,Vaue>::
WCPtrHashDict<Key,Vaue>::
WCPtrHashDict<Key,Vaue>:
85, 93
WCPtrHashDict<Key,Value>::
WCPtrHashDict<Key,Value>::
WCPtrHashDict<Key,Value>::
WCPtrHashDict<Key,Value>::
85, 97
WCPtrHashDict<Key,Vaue>::
WCPtrHashDict<Key,Vaue>::
WCPtrHashDict<Key,Vaue>::
WCPtrHashDict<Key,Vaue>::
WCPtrHashDict<Key,Vaue>::
104
WCPtrHashDict<Key,Value>::
101-102
WCPtrHashDict<Key,Value>::
WCPtrHashDict<Key,Vaue>::
WCPtrHashDict<Key,Vaue>::
85
WCPtrHashDict<Key,Vaue>::
Key,Vadue> 86-88
WCPtrHashDict<Key,Vaue>::
85

bitHash 85, 90
buckets 85, 91
clear 85,92
clearAndDestroy

contains 85, 94
entries 85, 95
find 85, 96
findkeyAndValue

forall 85,98
insert 85, 99
isEmpty 85, 100
operator = 85, 103
operator == 85,
operator [] 85,
remove 85, 105
resize 85, 106
WCPtrHashDict
WCPtrHashDict<

~WCPtrHashDict

939

Index

WCPtrHashDict<Key,Vaue>::~WCPtrHashDict<

Key,Vaue> 89

WCPtrHashDictlter, member function
WCPtrHashDictlter<Key,Value> 183-184

WCPtrHashDictlter<Key,Vaue>:

186

WCPtrHashDictlter<Key,Vaue>:
WCPtrHashDictlter<Key,Vaue>:

182, 188

WCPtrHashDictlter<Key,Vaue>:

182, 189

WCPtrHashDictlter<Key,Value>:

190-191

WCPtrHashDictlter<Key,Vaue>:
WCPtrHashDictlter<Key,Vaue>:

titer 183-184

WCPtrHashDictlter<Key,Vaue>:

titer<Key,Vaue> 182

WCPtrHashDictlter<Key,Vaue>:

ctiter 185

WCPtrHashDictlter<Key,Vaue>:

ctiter<Key,Value> 182
WCPtrHashSet, member function

:container 182,

‘key 182, 187
:operator ()

.operator ++
reset 182,

:value 182, 192
:WCPtrHashDic

:WCPtrHashDic
:~WCPtrHashDi

:~WCPtrHashDi

WCPtrHashSet<Type> 108
WCPtrHashTable<Type> 108

WCPtrHashSet<Type>:
WCPtrHashSet<Type>:
WCPtrHashSet<Type>:
WCPtrHashSet<Type>:

120

WCPtrHashSet<Type>:
WCPtrHashSet<Type>:
WCPtrHashSet<Type>:
WCPtrHashSet<Type>:
WCPtrHashSet<Type>:
WCPtrHashSet<Type>:
WCPtrHashSet<Type>:
WCPtrHashSet<Type>:
WCPtrHashSet<Type>:
WCPtrHashSet<Type>:
WCPtrHashSet<Type>:
WCPtrHashSet<Type>:
WCPtrHashSet<Type>::
WCPtrHashSet<Type>:

940

:bitHash 108, 117
:buckets 108, 118
:clear 108, 119
:clearAndDestroy 108,

:contains 108, 121
:entries 108, 122
:find 108, 123

forall 108, 124
sinsert 108, 125
risEmpty 108, 126
:occurrencesOf 108, 127
:operator = 108, 128
:operator == 108, 129
:remove 108, 130
:removeAll 108, 131
:resize 108, 132

WCPtrHashSet 108

:WCPtrHashTable 108

WCPtrHashSet<Type>::~WCPtrHashSet 108

WCPtrHashSet<Type>::~WCPtrHashTable 108

WCPtrHashSetlter, member function
WCPtrHashSetlter<Type> 205-206
WCPtrHashTablelter<Type> 205-206

WCPtrHashSetlter<Type>::
WCPtrHashSetlter<Type>:
WCPtrHashSetlter<Type>:
WCPtrHashSetlter<Type>::
WCPtrHashSetlter<Type>:
WCPtrHashSetlter<Type>::

205-206

WCPtrHashSetlter<Type>::

ype> 204

WCPtrHashSetlter<Type>:

208-209

WCPtrHashSetlter<Type>:

207

WCPtrHashSetlter<Type>:

Type> 204

WCPtrHashSetlter<Type>:

210

container 204, 211
current 204, 212
:operator () 204, 213
operator ++ 204, 214
reset 204, 215-216
WCPtrHashSetlter
WCPtrHashSetlter<T
:WCPtrHashTablelter
:~WCPtrHashSetlIter
:~WCPtrHashSetlter<

:~WCPtrHashTablelter

WCPtrHashTable, member function

WCPtrHashSet<Type>

108

WCPtrHashTable<Type> 108

WCPtrHashTable<Type>::
WCPtrHashTable<Type>::
WCPtrHashTable<Type>::
WCPtrHashTable<Type>::

120

WCPtrHashTable<Type>::
WCPtrHashTable<Type>::
WCPtrHashTable<Type>::
WCPtrHashTable<Type>::
WCPtrHashTable<Type>::
WCPtrHashTable<Type>::
WCPtrHashTable<Type>::

127

WCPtrHashTable<Type>::
WCPtrHashTable<Type>::
WCPtrHashTable<Type>::
WCPtrHashTable<Type>::
WCPtrHashTable<Type>::
WCPtrHashTable<Type>::

bitHash 108, 117
buckets 108, 118
clear 108, 119
clearAndDestroy 108,

contains 108, 121
entries 108, 122
find 108, 123
forall 108, 124
insert 108, 125
isEmpty 108, 126
occurrencesOf 108,

operator = 108, 128
operator == 108, 129
remove 108, 130
removeAll 108, 131
resize 108, 132
WCPtrHashSet 108

Index

WCPtrHashTable<Type>::WCPtrHashTable 108
WCPirHashTable<Type>::WCPtrHashTable<Typ

e> 109-111, 113-115

WCPtrHashTable<Type>::~WCPtrHashSet 108
WCPtrHashTable<Type>::~WCPtrHashTable

108

WCPtrHashTable<Type>::~WCPtrHashTable<Ty

pe> 112, 116

WCPtrHashTablelter, member function

WCPtrHashSetlter<Type>

208-209

WCPtrHashTablelter<Type> 208-209

WCPtrHashTablelter<Type>::
WCPtrHashTablelter<Type>::
WCPtrHashTablelter<Type>::

213

WCPtrHashTablelter<Type>::

214

WCPtrHashTablelter<Type>::
WCPtrHashTablelter<Type>::

205-206

WCPtrHashTablelter<Type>::

er 208-209

WCPtrHashTablelter<Type>::

207

WCPtrHashTablelter<Type>::

ter 210

container 204, 211
current 204, 212
operator () 204,
operator ++ 204,

reset 204, 215-216
WCPtrHashSetlter

WCPtrHashTablelt
~WCPtrHashSetlter

~WCPtrHashTablel

WCPtrOrderedV ector, member function
WCPtrOrderedVector<Type> 537
WCPtrSortedV ector<Type> 537

WCPtrOrderedV ector<Type>:
WCPtrOrderedV ector<Type>:
WCPtrOrderedV ector<Type>:

537, 547

WCPtrOrderedV ector<Type>:
WCPtrOrderedV ector<Type>:
WCPtrOrderedV ector<Type>:
WCPtrOrderedV ector<Type>:
WCPtrOrderedV ector<Type>:
WCPtrOrderedV ector<Type>:
WCPtrOrderedV ector<Type>:
WCPtrOrderedV ector<Type>:
WCPtrOrderedV ector<Type>:
WCPtrOrderedV ector<Type>::

537, 557

:append 538, 545
:clear 537, 546
:clearAndDestroy

.contains 537, 548
.entries 537, 549
:find 537, 550
first 537, 551
:index 537, 552
sinsert 537, 553
sinsertAt 538, 554
:isEmpty 537, 555
last 537, 556
occurrencesOf

WCPtrOrderedV ector<Type>::operator = 538,
559

WCPtrOrderedV ector<Type>::operator == 538,
560

WCPtrOrderedV ector<Type>::operator [] 538,
558

WCPtrOrderedV ector<Type>::prepend 538, 561

WCPtrOrderedV ector<Type>::remove 537, 562

WCPtrOrderedV ector<Type>::removeAll 537,
563

WCPtrOrderedV ector<Type>::removeAt 537,
564

WCPtrOrderedV ector<Type>::removeFirst 537,
565

WCPtrOrderedVector<Type>::removel ast 537,
566

WCPtrOrderedVector<Type>::resize 537, 567

WCPtrOrderedV ector<Type>::WCPtrOrderedVec
tor 537

WCPtrOrderedV ector<Type>::WCPtrSortedV ecto
r 537

WCPtrOrderedV ector<Type>::~WCPtrOrderedVe
ctor 537

WCPtrOrderedV ector<Type>::~WCPtrSortedV ect
or 537

WCPtrSkipList, member function
WCPtrSkipList<Type> 458-459
WCPtrSkipListSet<Type> 458-459

WCPtrSkipList<Type>:
WCPtrSkipList<Type>:

469

WCPtrSkipList<Type>:
WCPtrSkipList<Type>:
WCPtrSkipList<Type>:
WCPtrSkipList<Type>:
WCPtrSkipList<Type>:
WCPtrSkipList<Type>:
WCPtrSkipList<Type>:
WCPtrSkipList<Type>:
WCPtrSkipList<Type>:
WCPtrSkipList<Type>:
WCPtrSkipList<Type>:
WCPtrSkipList<Type>:

:Clear 459, 468
.clearAndDestroy 459,

:contains 459, 470
entries 459, 471

find 459, 472

forall 459, 473

linsert 459, 474
[isEmpty 459, 475
:occurrencesOf 459, 476
:operator = 459, 477
.operator == 459, 478
:remove 459, 479
:removeAll 459, 480
‘WCPtrSkipList 458-459

941

Index

WCPtrSkipList<Type>::WCPtrSkipList<Type>
460-462, 464-466
WCPtrSkipList<Type>::WCPtrSkipListSet 459
WCPtrSkipList<Type>::~WCPtrSkipList 459
WCPtrSkipList<Type>::~WCPtrSkipList<Type>
463, 467
WCPtrSkipList<Type>::~WCPtrSkipListSet 459
WCPtrSkipListDict, member function
WCPtrSkipListDict<Key,Value> 438-439
WCPtrSkipListDict<Key,Vaue>::.clear 439, 444
WCPtrSkipListDict<Key,Vaue>::clearAndDestro
y 439, 445
WCPtrSkipListDict<Key,Vaue>::contains 439,
446
WCPtrSkipListDict<Key,Value>::entries 439,
447
WCPtrSkipListDict<Key,Value>::find 439, 448
WCPtrSkipListDict<Key,Vaue>::findkeyAndVal
ue 439, 449
WCPtrSkipListDict<Key,Value>::forall 439, 450
WCPtrSkipListDict<Key,Vaue>::iinsert 439, 451
WCPtrSkipListDict<Key,Vaue>::isEmpty 439,
452
WCPtrSkipListDict<Key,Value>::operator = 439,
455
WCPtrSkipListDict<Key,Vaue>::operator ==
4309, 456
WCPtrSkipListDict<Key,Vaue>::operator []
439, 453-454
WCPtrSkipListDict<Key,Value>::remove 439,
457
WCPtrSkipListDict<Key,Vaue>::WCPtrSkipList
Dict 438-439
WCPtrSkipListDict<Key,Value>::WCPtrSkipL.ist
Dict<Key,Vaue> 440-442
WCPtrSkipListDict<Key,Value>::~WCPtrSkipLis
tDict 439
WCPtrSkipListDict<Key,Vaue>::~WCPtrSkipLis
tDict<Key,Vaue> 443
WCPtrSkipListSet, member function
WCPtrSkipList<Type> 459
WCPtrSkipListSet<Type> 459
WCPtrSkipListSet<Type>::clear 459, 468

942

WCPtrSkipListSet<Type>::clearAndDestroy 459,
469
WCPtrSkipListSet<Type>::contains 459, 470
WCPtrSkipListSet<Type>::entries 459, 471
WCPtrSkipListSet<Type>::find 459, 472
WCPtrSkipListSet<Type>::forall 459, 473
WCPtrSkipListSet<Type>::insert 459, 474
WCPtrSkipListSet<Type>::isEmpty 459, 475
WCPtrSkipListSet<Type>::occurrencesOf 459,
476
WCPtrSkipListSet<Type>::operator = 459, 477
WCPtrSkipListSet<Type>::operator == 459, 478
WCPtrSkipListSet<Type>::remove 459, 479
WCPtrSkipListSet<Type>::removeAll 459, 480
WCPtrSkipListSet<Type>::WCPtrSkipList
458-459
WCPtrSkipListSet<Type>::WCPtrSkipListSet
459
WCPtrSkipListSet<Type>::~WCPtrSkipList 459
WCPtrSkipListSet<Type>::~WCPtrSkipListSet
459
WCPtrSList, member function
WCPtrDList<Type> 262-263, 265
WCPtrSList<Type> 262-263, 265

WCPtrSList<Type>:
WCPtrSList<Type>:
WCPtrSList<Type>:
WCPtrSList<Type>:
WCPtrSList<Type>:
WCPtrSList<Type>:
WCPtrSList<Type>:
WCPtrSList<Type>:
WCPtrSList<Type>:
WCPtrSList<Type>:
WCPtrSList<Type>:
WCPtrSList<Type>:
WCPtrSList<Type>:
WCPtrSList<Type>:
WCPtrSList<Type>:
WCPtrSList<Type>::
WCPtrSList<Type>:
WCPtrSList<Type>:
WCPtrSListltemSize

macro 427, 527

:append 260, 270

:clear 260, 271
:clearAndDestroy 260, 272
:contains 260, 273

:entries 260, 274

:find 260, 275

findLast 260, 276

:forAll 260, 277

:get 260, 278

sindex 260, 279

sinsert 260, 280

[isEmpty 260, 281
:operator = 261, 282
:operator == 261, 283
‘WCPtrDList 264, 266-269

WCPtrSList 262-263, 265

"WCPHrSList<Type> 260
~WCPtrSList<Type> 260

Index

WCPtrSListlter, member function
WCPtrDListlter<Type> 369-370
WCPtrSListlter<Type> 369-370

WCPtrSListiter<Type>:
WCPtrSListiter<Type>:
WCPtrSListiter<Type>:
WCPtrSListiter<Type>:
WCPtrSListiter<Type>:
WCPtrSListiter<Type>:
WCPtrSListiter<Type>:
WCPtrSListiter<Type>:
WCPtrSListiter<Type>:
WCPtrSListiter<Type>:
WCPtrSListiter<Type>:
WCPtrSListiter<Type>:
WCPtrSListiter<Type>:

367

WCPtrSListiter<Type>:
WCPtrSListiter<Type>:
WCPtrSListiter<Type>:

:append 367, 375
:container 367, 376
:current 367, 377

:insert 367-368, 378
:operator () 368, 379
:operator ++ 368, 380
-operator += 368, 381
:operator -- 367-368, 382
:operator -= 367-368, 383

reset 367, 384-385

‘WCPtrDListlter 372-373
‘WCPtrSListlter 369-370
‘WCPtrSListIter<Type>

~WCPtrDListlter 374
~WCPtrSListlter 371
~WCPtrSListlter<Type>

WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:

565

WCPtrSortedV ector<Type>:

566

WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:

r 537

WCPtrSortedV ector<Type>:

537

WCPtrSortedV ector<Type>::

:remove 537, 562
:removeAll 537, 563
:removeAt 537, 564
:removeFirst 537,

:removelLast 537,

resize 537, 567
:WCPtrOrderedV ecto

:WCPtrSortedV ector

WCPtrSortedV ector

<Type> 539-540, 542-543

WCPtrSortedV ector<Type>:

or 537

WCPtrSortedV ector<Type>:

r 537

WCPtrSortedV ector<Type>:

r<Type> 541, 544

:~WCPtrOrderedV ect

:~WCPtrSortedV ecto

:~WCPtrSortedV ecto

367

WCPtrSortedV ector, member function
WCPtrOrderedVector<Type> 537
WCPtrSortedVector<Type> 537

WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:

537, 547

WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:

557

WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:

560

WCPtrSortedV ector<Type>:
WCPtrSortedV ector<Type>:

:append 538, 545
:clear 537, 546
:clearAndDestroy

:contains 537, 548
.entries 537, 549
:find 537, 550
first 537, 551
:index 537, 552
sinsert 537, 553
sinsertAt 538, 554
:isEmpty 537, 555
last 537, 556
:occurrencesOf 537,

:operator = 538, 559
:operator == 538,

:operator [] 538, 558
‘prepend 538, 561

WCPtrVector<Type>::
WCPtrVector<Type>::
WCPtrVector<Type>::
WCPtrVector<Type>::
WCPtrVector<Type>::
WCPtrVector<Type>::
WCPtrVector<Type>::
WCPtrVector<Type>::

clear 568, 573
clearAndDestroy 568, 574
length 568, 575

operator = 568, 577
operator == 568, 578
operator [] 568, 576
resize 568, 579
WCPtrVector<Type>

568-571

WCPtrVector<Type>:.~WCPtrVector<Type>

568, 572

WCQueue<Type,FType>::
WCQueue<Type,FType>::
WCQueue<Type,FType>::
WCQueue<Type,FType>::
WCQueue<Type,FType>::
WCQueue<Type,FType>::
WCQueue<Type,FType>::
WCQueue<Type,FType>::

e> 424, 426-427

WCQueue<Type,FType>::

pe> 424, 428
WCSLink 233

clear 424, 429

entries 424, 430

first 424, 431

get 424, 432

insert 424, 433
isEmpty 424, 434
last 424, 435
WCQueue<Type,FTyp

~WCQueue<Type,FTy

WCSLink::WCSLink 284-285

943

Index

WCSLink::~WCSLink 284, 286

WCStack<Type,FType>:
WCStack<Type,FType>:
WCStack<Type,FType>:
WCStack<Type FType>:
WCStack<Type FType>:
WCStack<Type FType>:
WCStack<Type,FType>:

524, 526-527

WCStack<Type FType>:

:clear 524, 529

‘entries 524, 530
lisEmpty 524, 531

pop 524, 532

‘push 524, 533

‘top 524,534
:WCStack<Type,FType>

~WCStack<Type,FType

> 524, 528

WCVa ConstDListlter, member function
WCVaConstDListlter<Type> 391-392
WCVaCongtSListlter<Type> 391-392

WCVaConstDListIter<Type>:
WCVaConstDListIter<Type>::

394

WCVaConstDListlter<Type>::
WCVaConstDListlter<Type>::
WCVaConstDListlter<Type>::

append 386
container 386,

current 386, 395
insert 386
operator () 387,

WCV algggnstDL istiter<Type>::operator ++ 387,
WCV algggnstDL istiter<Type>::operator += 387,
WcCv alsgc?nstDL istiter<Type>::operator -- 387,

WCVaISCQC?nstDL istiter<Type>:.operator -= 387,
WCValég)gnstDL istiter<Type>::reset 386-387,

401-402

WCVaConstDListlter<Type>::

titer 391-392

WCVaConstDListIter<Type>:

Iter 388-389

WCVaConstDListIter<Type>::

WCVaConstDLis

WCVaConstSList

~WCVaConstDLi

WCValConstSListlter<Type>::
WCValConstSListlter<Type>::
WCVaConstSListlter<Type>::

396

WCVaConstSListIter<Type>::

397

WCVaConstSListIter<Type>::

398

WCVaConstSListlter<Type>::

399

WCValConstSListlter<Type>::

400

WCVaConstSListlter<Type>::

401-402

WCVaConstSListlter<Type>::

Iter 391-392

WCVaConstSListIter<Type>::

Iter 388-389

WCVaConstSListlter<Type>::

Iter<Type> 386

WCValConstSListlter<Type>::

stiter 393

WCValConstSListlter<Type>::

stiter 390

WCVaConstSListIter<Type>::

stiter<Type> 386

current 386, 395
insert 386
operator () 387,
operator ++ 387,
operator += 387,
operator -- 387,
operator -= 387,
reset 386-387,
WCVa ConstDList
WCValConstSList
WCValConstSList
~WCVaConstDLi

~WCValConstSLi

~WCValConstSLi

WCVaDList, member function
WCVaDList<Type> 292, 294-297
WCVaSList<Type> 292, 294-297

WCVaDList<Type>::append 287, 298

WCValDList<Type>::clear 287, 299

WCValDList<Type>::clearAndDestroy 287, 300

WCValDList<Type>::contains 287, 301

WCVaDList<Type>::entries 288, 302

WCValDList<Type>::find 288, 303

WCVaDList<Type>::findLast 288, 304

stiter 393
WCVaConstDListlter<Type>::~WCVaConstSLi
stiter 390
WCVa ConstSListlter, member function
WCValConstDListIter<Type> 388-389
WCValConstSListlter<Type> 388-389
WCVaConstSListlter<Type>::append 386
WCVal ConstSListlter<Type>::container 386, 394

944

WCVaDList<Type>::forAll 288, 305
WCValDList<Type>::.get 288, 306
WCVaDList<Type>::index 288, 307
WCVaDList<Type>::insert 288, 308
WCVaDList<Type>::isEmpty 288, 309
WCValDList<Type>::operator = 288, 310
WCValDList<Type>::operator == 288, 311
WCValDList<Type>::WCVaDList 292, 294-297

Index

WCVaDList<Type>::WCVa SList 290-291, 293

WCVaDListltemSize
macro 267, 295

WCVaDListlter, member function
WCVaDListlter<Type> 409-410
WCVaSListlter<Type> 409-410

WCVaDListlter<Type>:
WCVaDListlter<Type>:
WCVaDListlter<Type>:
WCVaDListlter<Type>::
WCVaDListlter<Type>:
WCVaDListlter<Type>:
WCVaDListlter<Type>:
WCVaDListlter<Type>:

419

WCVaDListlter<Type>:

420

WCVaDListlter<Type>:
WCVaDListlter<Type>:

409-410

WCVaDListlter<Type>:

406-407

WCVaDListlter<Type>::
WCVaDListlter<Type>:

:append 403, 412
:container 403, 413
current 403, 414

insert 403-404, 415

:operator () 404, 416
:operator ++ 404, 417
:operator += 404, 418
:operator -- 403-404,

:operator -= 403-404,

reset 403, 421-422
:WCVaDListlter

‘WCVaSListlter

~WCValDListlter 411

~WCValSListiter 408

WCVaHashDict, member function
WCVaHashDict<Key,Vaue> 134
WCVaHashDict<Key,Value>::bitHash 134, 139
WCVaHashDict<Key,Vaue>::buckets 134, 140
WCVaHashDict<Key,Vaue>:.clear 134, 141
WCVaHashDict<Key,Vaue>::contains 134, 142
WCVaHashDict<Key,Value>::entries 134, 143
WCVaHashDict<Key,Vaue>:find 134, 144
WCVaHashDict<Key,Vaue>::findkeyAndVaue

134, 145

WCVaHashDict<Key,Value>::forall 134, 146
WCVaHashDict<Key,Vaue>:insert 134, 147
WCVaHashDict<Key,Value>::isEmpty 134, 148
WCVaHashDict<Key,Vaue>::operator = 134,

151

WCVaHashDict<Key,Vaue>::operator == 134,

152

WCVaHashDict<Key,Vaue>::operator [] 134,

149-150

WCVaHashDict<Key,Value>::remove 134, 153

WCValHashDict<Key,Vaue>::resize 134, 154
WCVaHashDict<Key,Vaue>::WCVaHashDict

134

WCVaHashDict<Key,Vaue>::WCValHashDict<
Key,Vaue> 135-137
WCVaHashDict<Key,Vaue>::~WCVaHashDict

134

WCVaHashDict<Key,Vaue>::~WCVaHashDict
<Key,Vaue> 138
WCVaHashDictlter, member function
WCVaHashDictlter<Key,Vaue> 194-195
WCVaHashDictlter<Key,Value>::container 193,

197

WCVaHashDictlter<Key,Vaue>::key 193, 198
WCVaHashDictlter<Key,Vaue>::operator ()

193, 199

WCVaHashDictlter<Key,Vaue>::operator ++

193, 200

WCVaHashDictlter<Key,Value>::reset 193,

201-202

WCVaHashDictlter<Key,Vaue>::value 193,

203

WCValHashDictlter<Key,Vaue>::WCVaHashDi

ctiter 194-195

WCVaHashDictlter<Key,Vaue>::WCVaHashDi
ctiter<Key,Value> 193
WCVaHashDictlter<Key,Vaue>::~WCVaHash

Dictlter 196

WCVaHashDictlter<Key,Vaue>::~WCVaHash
Dictlter<Key,Value> 193
WCVaHashSet, member function
WCValHashSet<Type> 156
WCVaHashTable<Type> 156

WCVaHashSet<Type>::
WCVaHashSet<Type>::
WCVaHashSet<Type>::
WCVaHashSet<Type>::
WCVaHashSet<Type>::
WCVaHashSet<Type>::
WCVaHashSet<Type>::
WCVaHashSet<Type>::
WCVaHashSet<Type>::
WCVaHashSet<Type>::
WCVaHashSet<Type>::

bitHash 156, 165
buckets 156, 166
clear 156, 167
contains 156, 168
entries 156, 169
find 156, 170
forall 156, 171
insert 156, 172
isEmpty 156, 173
occurrencesOf 156, 174
operator = 156, 175

945

Index

WCVaHashSet<Type>::
WCVaHashSet<Type>::
WCVaHashSet<Type>::
WCVaHashSet<Type>::
WCVaHashSet<Type>::
WCVaHashSet<Type>::
WCVaHashSet<Type>::

WCVaHashSet<Type>

operator == 156, 176
remove 156, 177
removeAll 156, 178
resize 156, 179
WCValHashSet 156
WCValHashTable 156
~WCVaHashSet 156
:~WCValHashTable 156

WCV dHashSetlter, member function

WCVaHashTable<Type>:
WCVaHashTable<Type>:
WCVaHashTable<Type>:
WCVaHashTable<Type>:
WCVaHashTable<Type>:

156

WCVaHashTable<Type>:

:remove 156, 177
:removeAll 156, 178
resize 156, 179
‘WCValHashSet 156
:WCVaHashTable

"WCVaHashTable<Ty

pe> 157-159, 161-163
WCVaHashTable<Type>::~WCVaHashSet 156

WCValHashSetlter<Type> 218-219
WCVaHashTablelter<Type> 218-219

WCVaHashSetlter<Type>:
WCVaHashSetlter<Type>:
WCVaHashSetlter<Type>:
WCVaHashSetlter<Type>:
WCVaHashSetlter<Type>:
WCVaHashSetlter<Type>:

218-219

WCVaHashSetlter<Type>:

Type> 217

WCVaHashSetlter<Type>:

221-222

WCVaHashSetlter<Type>::

220

WCVaHashSetlter<Type>:

<Type> 217

WCVaHashSetlter<Type>:

er 223

:container 217, 224
current 217, 225
:operator () 217, 226
:operator ++ 217, 227
reset 217, 228-229
‘WCVaHashSetlter
:WCVaHashSetlter<
:WCVaHashTablelter
~WCVaHashSetlter
:~WCValHashSetlter

~WCVaHashTablelt

WCVaHashTable, member function

WCValHashSet<Type>

156

WCVaHashTable<Type> 156

WCVaHashTable<Type>:
WCVaHashTable<Type>:
WCVaHashTable<Type>:
WCVaHashTable<Type>:
WCVaHashTable<Type>:
WCVaHashTable<Type>:
WCVaHashTable<Type>:
WCVaHashTable<Type>:
WCVaHashTable<Type>:
WCVaHashTable<Type>:
174
WCVaHashTable<Type>:
WCVaHashTable<Type>:

946

:bitHash 156, 165
:buckets 156, 166
.clear 156, 167
:contains 156, 168
:entries 156, 169
:find 156, 170
forall 156, 171
sinsert 156, 172
:isEmpty 156, 173
:occurrencesOf 156,

:operator = 156, 175
:operator == 156, 176

WCVa HashTable<Type>::~WCVaHashTable

156

WCValHashTable<Type>::~WCValHashTable<T

ype> 160, 164

WCVaHashTablelter, member function

WCVaHashSetlter<Type>

221-222

WCVaHashTablelter<Type> 221-222

WCVaHashTablelter<Type>:

WCVaHashTablelter<Type>:

WCVaHashTablelter<Type>:
226

WCValHashTablelter<Type>:
227

WCVaHashTablelter<Type>::
‘WCVaHashSetlter

WCVaHashTablelter<Type>:
218-219

WCVaHashTablelter<Type>:
ter 221-222

WCVaHashTablelter<Type>:
er 220

WCVaHashTablelter<Type>::

elter 223

:container 217, 224
:current 217, 225
.operator () 217,

:operator ++ 217,

reset 217, 228-229

‘WCValHashTablel

:~WCValHashSetlt

~WCVaHashTabl

WCVa OrderedV ector, member function
WCVa OrderedVector<Type> 581
WCVa SortedVector<Type> 581

WCVa OrderedVector<Type>::
WCVa OrderedVector<Type>::
WCVa OrderedVector<Type>::
WCVa OrderedV ector<Type>::
WCVa OrderedV ector<Type>::
WCVa OrderedV ector<Type>::
WCVa OrderedV ector<Type>::
WCVal OrderedV ector<Type>::
WCVa OrderedVector<Type>::
WCValOrderedVector<Type>::

append 582, 589
clear 581, 590
contains 581, 591
entries 581, 592
find 581, 593
first 582, 594
index 582, 595
insert 582, 596
insertAt 582, 597
isEmpty 582, 598

Index

WCVaOrderedVector<Type>::last 582, 599

WCValOrderedV ector<Type>::occurrencesOf
582, 600

WCVa OrderedV ector<Type>::operator = 582,
602

WCVa OrderedV ector<Type>::operator == 582,
603

WCVa OrderedV ector<Type>::operator [] 582,
601

WCVa OrderedVector<Type>::prepend 582, 604

WCVaOrderedV ector<Type>::remove 582, 605

WCVa OrderedV ector<Type>::removeAll 582,
606

WCVa OrderedVector<Type>::removeAt 582,
607

WCVa OrderedV ector<Type>::removeFirst 582,
608

WCVa OrderedV ector<Type>::removel ast 582,
609

WCVaOrderedV ector<Type>::resize 582, 610

WCValOrderedV ector<Type>::WCVa OrderedVe
ctor 581

WCVa OrderedV ector<Type>::WCV al SortedV ect
or 581

WCVa OrderedVector<Type>::~WCVa Ordered
Vector 581

WCVa OrderedVector<Type>::~WCVa SortedVe
ctor 581

WCVal SkipList, member function

WCVaSkipList<Type> 501
WCValSkipListSet<Type> 501

WCVa SkipList<Type>::
502-504, 506-508

WCVa SkipList<Type>::

WCVa SkipList<Type>::

WCVa SkipList<Type>::
505, 509

WCVa SkipList<Type>::

WCVa SkipList<Type>
WCVa SkipListSet 501
~WCValSkipList 501
~WCVa SkipList<Type>

~WCVal SkipListSet

WCVa SkipList<Type>:
WCVa SkipList<Type>:
WCVa SkipList<Type>:
WCVa SkipList<Type>:
WCVa SkipList<Type>:
WCVa SkipList<Type>:
WCVa SkipList<Type>:
WCVa SkipList<Type>:
WCVa SkipList<Type>:
WCVa SkipList<Type>:
WCVa SkipList<Type>:
WCVa SkipList<Type>:
WCVa SkipList<Type>:

.clear 501, 510
:contains 501, 511
.entries 501, 512
:find 501, 513

foral 501, 514
sinsert 501, 515
:isEmpty 501, 516
.occurrencesOf 501, 517
:operator = 501, 518
:operator == 501, 519
:remove 501, 520
:removeAll 501, 521
‘WCVa SkipList 501

501
WCVa SkipListDict, member function
WCVaSkipListDict<Key,Value> 482
WCVa SkipListDict<Key,Value>::clear 482, 487
WCVal SkipListDict<Key,Vaue>::contains 482,
488
WCVa SkipListDict<Key,Value>::entries 482,
489
WCVa SkipListDict<Key,Value>::find 482, 490
WCVa SkipListDict<Key,Vaue>::findkeyAndVa
lue 482, 491
WCVa SkipListDict<Key,Vaue>::foral 482, 492
WCVaSkipListDict<Key,Vaue>::insert 482,
493
WCVal SkipListDict<Key,Vaue>::isEmpty 482,
494
WCVa SkipListDict<Key,Vaue>::operator =
482, 497
WCVa SkipListDict<Key,Vaue>::operator ==
482, 498
WCVa SkipListDict<Key,Vaue>::operator []
482, 495-496
WCVaSkipListDict<Key,Vaue>::remove 482,
499
WCVal SkipListDict<Key,Vaue>::WCVal SkipLis
tDict 482
WCVa SkipListDict<Key,Value>::WCVa SkipLis
tDict<Key,Value> 483-485
WCVa SkipListDict<Key,Value>::~WCVal SkipL
istDict 482
WCVa SkipListDict<Key,Vaue>::~WCVa SkipL
istDict<Key,Vaue> 486
WCVa SkipListSet, member function
WCValSkipList<Type> 501
WCValSkipListSet<Type> 501
WCValSkipListSet<Type>::clear 501, 510
WCValSkipListSet<Type>::contains 501, 511

947

Index

WCVa SkipListSet<Type>:
WCVa SkipListSet<Type>:
WCVa SkipListSet<Type>:
WCVa SkipListSet<Type>:
WCVa SkipListSet<Type>:
WCVa SkipListSet<Type>:

517

WCVa SkipListSet<Type>:
WCVa SkipListSet<Type>:
WCVa SkipListSet<Type>:
WCVa SkipListSet<Type>:
WCVa SkipListSet<Type>:
WCVa SkipListSet<Type>:

501

WCVa SkipListSet<Type>:

501

WCVa SkipListSet<Type>:

501

:entries 501, 512
:find 501, 513
forall 501, 514
sinsert 501, 515
risEmpty 501, 516
:occurrencesOf 501,

:operator = 501, 518
:operator == 501, 519
:remove 501, 520
:removeAll 501, 521
‘WCVa SkipList 501
‘WCVal SkipListSet

~WCValSkipList

~~\WCVal SkipListSet

WCVaSList, member function
WCVaDList<Type> 290-291, 293
WCValSList<Type> 290-291, 293

WCValSListiter<Type>::
WCValSListiter<Type>::
WCValSListlter<Type>::
WCValSListlter<Type>::
WCVaSListlter<Type>::
WCVaSListlter<Type>::
WCVaSListiter<Type>::
WCValSListiter<Type>::

419

WCVaSListiter<Type>::

420

WCValSListiter<Type>::
WCValSListlter<Type>::

409-410

WCVaSListiter<Type>::

406-407

WCVaSListiter<Type>::

403

WCValSListiter<Type>::
WCVaSListiter<Type>::
WCValSListiter<Type>::

append 403, 412
container 403, 413
current 403, 414
insert 403-404, 415
operator () 404, 416
operator ++ 404, 417
operator += 404, 418
operator -- 403-404,

operator -= 403-404,

reset 403, 421-422
WCVaDListlter

WCValSListlter
WCVaSListiter<Type>
~WCValDListlter 411

~WCValSListlter 408
~WCVaSListiter<Type

WCValSList<Type>:
WCValSList<Type>:
WCVaSList<Type>:
WCVaSList<Type>:
WCVaSList<Type>:
WCVaSList<Type>::
WCVaSList<Type>::
WCVaSList<Type>::
WCVaSList<Type>::
WCValSList<Type>:
WCValSList<Type>:
WCValSList<Type>:
WCVaSList<Type>:
WCVaSList<Type>:
WCVaSList<Type>:
WCVaSList<Type>::
WCVaSList<Type>::

WCVaSList<Type>

append 287, 298

clear 287,299
clearAndDestroy 287, 300
contains 287, 301

entries 288, 302

find 288, 303

findLast 288, 304

forAll 288, 305

get 288, 306

index 288, 307

insert 288, 308

isEmpty 288, 309
operator = 288, 310
operator == 288, 311
WCValDList 292, 294-297
WCVaSList 290-291, 293
WCVaSList<Type> 287
:~WCVaSList<Type> 287

WCValSListitemSize
macro 263, 291, 427, 527
WCVaSListlter, member function
WCValDListlter<Type> 406-407
WCVaSListlter<Type> 406-407

948

> 403

WCVal SortedV ector, member function
WCVa OrderedVector<Type> 581
WCVad SortedVector<Type> 581

WCVa SortedV ector<Type>:
WCVa SortedV ector<Type>:
WCVa SortedV ector<Type>:
WCVa SortedV ector<Type>:
WCVa SortedV ector<Type>:
WCVal SortedV ector<Type>:
WCVal SortedV ector<Type>:
WCVal SortedV ector<Type>:
WCValSortedV ector<Type>:
WCVa SortedV ector<Type>:
WCVa SortedV ector<Type>:
WCVa SortedV ector<Type>:

600

WCVa SortedV ector<Type>:
WCVa SortedV ector<Type>:

603

WCVal SortedV ector<Type>:

601

WCVa SortedV ector<Type>:

:append 582, 589
:clear 581, 590
:contains 581, 591
entries 581, 592
:find 581, 593
first 582, 594
:index 582, 595
:insert 582, 596
insertAt 582, 597
:isEmpty 582, 598
last 582, 599
:occurrencesOf 582,

:operator = 582, 602
.operator == 582,

:operator [] 582,

‘prepend 582, 604

Index

WCVal SortedV ector<Type>

WCVal SortedV ector<Type>
606

WCVal SortedV ector<Type>

WCVal SortedV ector<Type>
608

WCVal SortedV ector<Type>
609

WCVal SortedV ector<Type>

WCVal SortedV ector<Type>
or 581

WCVal SortedV ector<Type>
r 581

WCValSortedV ector<Type>

::remove 582, 605
::removeAll 582,

::removeAt 582, 607
::removeFirst 582,

:removelast 582,

resize 582, 610
::\WCVal OrderedV ect

::WCVa SortedVecto

::WCVa SortedVecto

r<Type> 583-584, 586-587

WCVal SortedV ector<Type>
ctor 581

WCVal SortedV ector<Type>
or 581

WCValSortedV ector<Type>
or<Type> 585, 588

::~WCVaOrderedVe

:~WCVa SortedV ect

::~WCVa SortedV ect

ios 670, 705

zero_buckets
exception 71, 106, 132, 154, 179
zero_buckets, member enumeration
WCExcept 70

WCVaVector<Type>:
WCValVector<Type>:
WCValVector<Type>:
WCVaVector<Type>:
WCVaVector<Type>:
WCVaVector<Type>:
WCVaVector<Type>:

611, 613-615

WCVaVector<Type>:

611, 616

:Clear 612, 617
‘length 612, 618
:operator = 612, 620
:operator == 612, 621
:operator [] 612, 619
resize 612, 622
:WCVaVector<Type>

:~WCValVector<Type>

width, member function

ios 670, 704

write, member function

ostream 771, 793

ws, manipulator 748, 762

xalloc, member function

~W(ClsvConstDListlter, member function
WClsvConstDListlter<Type> 321
W(ClsvConstSListlter<Type> 321
~W(ClsvConstSListlter, member function
W(ClsvConstDListIter<Type> 318
W(ClsvConstSListIter<Type> 318
~W(ClsvDListlter, member function
WClsvDListlter<Type> 338
WClsvSListlter<Type> 338
~W(ClsvSListlter, member function
WClsvDListlter<Type> 335
W(ClsvSListlter<Type> 335
~WCPtrConstDL istlter, member function
WCPtrConstDListlter<Type> 357
WCPtrConstSListlter<Type> 357
~WCPtrConstSListlter, member function
WCPtrConstDListlter<Type> 354
WCPtrConstSListlter<Type> 354
~WCPtrDListlter, member function
WCPtrDListlter<Type> 374
WCPtrSListlter<Type> 374
~WCPtrHashDict, member function
WCPtrHashDict<Key,Vaue> 85
~WCPtrHashDictlter, member function
WCPtrHashDictlter<Key,Value> 185

949

Index

~WCPtrHashSet, member function
WCPtrHashSet<Type> 108
WCPtrHashTable<Type> 108
~WCPtrHashSetlter, member function
WCPtrHashSetlter<Type> 207
WCPtrHashTablelter<Type> 207
~WCPtrHashTable, member function
WCPtrHashSet<Type> 108
WCPtrHashTable<Type> 108
~WCPtrHashTablelter, member function
WCPtrHashSetlter<Type> 210
WCPtrHashTablelter<Type> 210
~WCPtrOrderedV ector, member function
WCPtrOrderedV ector<Type> 537
WCPtrSortedV ector<Type> 537
~WCPtrSkipList, member function
WCPtrSkipList<Type> 459
WCPtrSkipListSet<Type> 459
~WCPtrSkipListDict, member function
WCPtrSkipListDict<Key,Value> 439
~WCPtrSkipListSet, member function
WCPtrSkipList<Type> 459
WCPtrSkipListSet<Type> 459
~WCPtrSListlter, member function
WCPtrDListlter<Type> 371
WCPtrSListlter<Type> 371
~WCPtrSortedV ector, member function
WCPtrOrderedVector<Type> 537
WCPtrSortedV ector<Type> 537
~WCVa ConstDListlter, member function
WCVaConstDListlter<Type> 393
WCVaConstSListlter<Type> 393
~WCValConstSListlter, member function
WCVaConstDListlter<Type> 390
WCVaConstSListlter<Type> 390
~WCValDListlter, member function
WCVaDListlter<Type> 411
WCVaSListiter<Type> 411
~WCVaHashDict, member function
WCVaHashDict<Key,Vaue> 134
~WCVaHashDictlter, member function
WCVaHashDictlter<Key,Vaue> 196
~WCVaHashSet, member function
WCVaHashSet<Type> 156

950

WCVaHashTable<Type> 156
~WCVaHashSetlter, member function
WCValHashSetlter<Type> 220
WCVaHashTablelter<Type> 220
~WCVaHashTable, member function
WCVaHashSet<Type> 156
WCVaHashTable<Type> 156
~WCVaHashTablelter, member function
WCVaHashSetlter<Type> 223
WCVaHashTablelter<Type> 223
~WCVa OrderedVector, member function
WCVa OrderedVector<Type> 581
WCVa SortedVector<Type> 581
~WCVa SkipList, member function
WCVaSkipList<Type> 501
WCVa SkipListSet<Type> 501
~WCVa SkipListDict, member function
WCVaSkipListDict<Key,Value> 482
~WCVa SkipListSet, member function
WCVaSkipList<Type> 501
WCValSkipListSet<Type> 501
~WCVa SListlter, member function
WCValDListlter<Type> 408
WCVaSListiter<Type> 408
~WCVa SortedV ector, member function
WCVa OrderedVector<Type> 581
WCVa SortedVector<Type> 581

